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1 Introduction

The primary motivation for this research is the interest by the Air Force and many other organizations
in developing and deploying large, precise, lightweight, space-based antennas and optical telescopes. Large
diameter, optical quality membrane reflectors may well be the critical components that make such structures
possible. The prevailing paradigm for creating doubly-curved membrane surfaces is the pressurized lenticular
configuration, illustrated in Figure 1. However, there are serious difficulties that must be overcome in order

for such a configuration to be successfully deployed in space. These problems are discussed at some length
in Reference [1]. ’
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Figure 1: Optical lenticular for imaging.

An alternative to the pressurized lenticular configuration is a thin laminate shell consisting of a membrane
and a dielectric coating commonly used in optics to meet a high reflectivity requirement. This laminate shell
is referred to as a stress-coated net-shape membrane reflector. The net-shape membrane portion of the
laminate is realized by manufacturing a polymer to nearly its final shape, which is typically either spherical
or parabolic. The net-shape process involves several basic steps. The solvent-based polymer is initially cast
on a mandrel (also referred to as a “mold”) having the desired surface qualities (e.g., optically smooth, and
having the required shape), where the solvent is allowed to evaporate, leaving a thin high quality membrane
of the desired shape. At this point, however, significant internal stress has developed in the membrane due
to the solvent evaporation process. The membrane is then taken through an annealing process in which the
mold and membrane are heated to nearly the glass transition temperature of the polymer, eliminating most
of the shrinkage stress. However, the coefficient of thermal expansion (CTE) of the membrane is, in the
systems we consider, higher than that of the mold. As the system is allowed to cool to room temperature,
the membrane attempts to contract more than the mold, due to its higher CTE. Since the membrane is fully
constrained by the mold, hence cannot complete its contraction, the effect of the CTE mismatch is to induce
a (tensile) thermal stress in the membrane. Such a stress is referred to as non-mechanical (or inelastic or
residual), i.e., it is a stress that exists in the absence of any displacement-related strain (see, for example,
Fung [2], pp. 354-355). This residual thermal stress would act to deform the membrane from its initial shape
upon removal from the mold. The other serious problem is the simple fact that a membrane is ”flimsy”, that

-Is, it lacks the stiffness required to resist bending due to external loads. Examples of such loads are gravity




and wind in a near earth environment, and slewing or other forces used for control in a space environment.
At any rate, upon removal from the mold, a net-shape membrane would not be expected to retain the shape
of the mold.

The research reported here addresses the possibility of solving both the CTE mismatch problem, and
lack of stiffness, by applying to the membrane a coating with an intrinsic compressive stress designed to
compensate the CTE mismatch stress, as well as provide enough stiffness to maintain the desired shape
under various loads. Specifically, we examine the effects of gravity and uniform pressure loads on the
stress-coated membrane. In Volume I of this two-volume report the method of asymptotic expansions is
used to derive various theories of stress-coated membranes from the general, geometrically nonlinear, three-
dimensional theory of elasticity. In Volume II we present solutions of the equations satisfying various types
of boundary conditions.

2 Refei'énce Placement and Reference Configuration

We introduce a region C of 3-dimensional Euclidean space in the form of a thin right circular cylinder of
radius a and uniform thickness (or height) h << a, and refer to this purely mathematical construct as the
reference placement of a coated membrane shell. This cylinder is further assumed to be divided into two
coaxial cylinders of the same radius a, one of thickness h,, the other of thickness k., so that h = h, + h,,
as shown in the lower portions of Figures 2 and 3. We assume given a fixed orthonormal Cartesian basis
{i,J,k} with origin O at the center of the circular disk defined by the intersection of C and a bisecting
plane orthogonal to the axis. An arbitrary point P of the reference placement may be specified by either its
Cartesian coordinates X4 = {X,Y, Z}, or its cylindrical coordinates Q4 = {R,©, Z}. Thus, the bisecting
or middle plane of C is defined by Z = 0, and the axis of C by the line X =Y = 0 through O. The position
vector of P with respect to O is given by '

X =Xi+Yj+Zk = Rcos@i + Rsin®j + Zk. @2.1)

We introduce orthonormal basis vectors {ERr,Ee¢,Ez} associated with the cylindrical coordinates, defined
by

— _ X
Es=X4/1X 4], where Xu= W, 2.2)
so that .
Ep = cos©i + sin@®j, Eg = —sin@i + cos®j, Ez = k, (2.3)
in terms of which we can write the position vector as
X = REgp + ZE3. 2.4)

The physical system of interest is a laminate material body in the form of an initially curved membrane
substrate to which an optical coating has been applied. The reference configuration of this coated membrane
is assumed to be a region S defined by a mapping ¢ from the reference placement C, under which a point P
of C is mapped to some material point P= ¢(P) of S. A point S of the middle plane of C with coordinates
(R, ©,0) is mapped by ¢ to a point S of the middle surface of S with coordinates (R, ©, Zs), where

Zs = I(R), (2.5)

hence we are assuming that the middle surface is a surface of revolution. The azimuthal coordinate © of
" any point of C is assumed unchanged by this mapping, so that ® = © on S. This action of ¢ on the middle
plane is illustrated in the upper portions of Figures 2 and 3.

The action of ¢ on points off the middle plane depends on the distribution of the thicknesses h. and h, as
a result of the processes used to cast the membrane on the mold, and to apply the coating to the membrane.
. The simplest model results by assuming the coated membrane to have constant axial thicknesses, so that
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Figure 2: Definition of the reference configuration S (upper part of Figure) of a coated membrane shell of revolution
as a mapping from the reference placement C (lower part of Figure), assuming the thicknesses h, and h, to be constant
along any line parallel to the axis.

an arbitrary point P with non-zero axial coordinate Z is mapped to a material point P with coordinates
{R,©,Z }, obtained by translating a distance Z (equal to the original axial coordinate) from S along the
axial direction Ez, as shown in the upper portion of Figure 2. The complete mapping can be determined

geometrically as follows. The position vector of P with respect to O can, according to Figure 2, be written
in two different ways:

X =REr+ ZEz = Y + ZEg, (2.6)

where Y is the position vector of S with respect to O. Now, Y = REg + I'(R) Egz, hence we have from




(2.6): B
RER + ZEz = REg + [['(R) + Z]Eg,

and a comparison of components on both sides of the second equality yields the remaining two component
" mappings of ¢ (© = O is the other component mapping):

R=R, and Z =T(R)+ Z Q.7

The position vector of a material point in the reference configuration S of the coated membrane is thus given
in terms of coordinates on the reference placement C by

X = REg + [[(R) + Z]Ez. (2.8)

For comparisons with finite element analyses that use shell elements in their formulation, it is perhaps
more appropriate to assume the coated membrane to have constant thicknesses h. and h, normal to the
middle surface. In this case, an arbitrary point P with non-zero axial coordinate Z is mapped to a material
point, P with coordinates {R, ©, Z}, obtained by translating the distance Z along the unit normal EN to the
middle surface at S (see Figure 3). The position vector of P with respect to O is then given by

X = REgr + ZEz = Y + ZEy, 2.9)

where Y = REg + I'(R) Ez, as before. To compute the unit normal En, we first note that equation (2.5)
can be written as ¥(R, Zs) = 0, where % is the function defined by

¥(R,Z) = Z — T(R). _ (2.10)

The unit normal to the midsurface is the normalized gradient of this function:
_ VY -I'REgr + Ez
V¥l — 1+ T,R)?

where T g here is the ordinary derivative of I' with respect to R (note that this slope is negative in the first
quadrant). Substituting these results in (2.9) yields

En (2.11)

REr + ZEz = REp + I(R)Ez + Z (M)

v1+ (F,R)z
from which the component mappings of ¢ are given by

~ F,R

R=R-27Z—=——— = R+ Zsine,
V1+ (T ,r)? 2.12)
Z=T(R) + 2 ! =I'(R) + Z cosa,

vV 1+ (F,B)2

where « is the angle between Ez and the unit normal Ex ata point on the middle surface (cosa = Ez-En).
From (2.12) we have

cosa = é, sina = -—E(’;i, where & = 4/1+ (T\r)%. (2.13)

The position vector of a material point in the reference configuration of the coated membrane is thus given
in terms of coordinates on the reference placement by

X = (R - Z%—) Er + (I‘(R) + Zé) Ez = (R + Zsina)Eg + [['(R) + Zcosa]Ez. - (2.14)
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Figure 3: Definition of the reference configuration S as a mapping from the reference placement C, assuming the
thicknesses h. and h to be constant along any line through a normal to the middle surface Zs =T(R).

The use of a model with constant thicknesses normal to the middle surface is considerably more compli-
cated to analyze theoretically than one with constant axial thicknesses. In the remainder of this work we
use the simpler model. To get an estimate of the errors made in choosing the constant-axial-thickness model

over the constant-normal-thickness model, we consider the important case of a paraboloidal middle surface
defined by

1
4f

where f is the focal length and Tg is the apex displacement. Since I'(a) = 0, it follows that To = a?/(4f),

I'(R) =Ty - — R?, (2.15)




hence

1 A
I'(R) = 7 (a® — R?). (2.16)
The tangent of the slope angle is, from (2.13), tana = —T' g, so that
tana = E R. 2.17)
The f-number of the paraboloid, which we denote by F#, is defined by
VR ‘
F 5" (2.18)
so we can write the last two equations in terms of f-number as
__1 2 2 - -1
| F(R) = 8aF# (a - R ), tana = —F,R = mR (219)
The angle o has its maximum value at the edge R = a, in which case
1
tan ez = iFE (2.20)

For the optical applications envisioned here we expect to have f-numbers of 2 or greater, hence

tan ez < 0.125 = amar < 7.1°

) : (2.21)
COS ez = 0.992, sin ez < 0.124.

Use of the constant-axial-thickness model entails approximating cosa & 1 and sin a = 0, so for this lowest f-
number one might expect any differences between our theoretical results, and finite element analysis results,
to be at least partly attributable to these approximations.

3 Deformation, Displacement, and Strain

When the coated membrane shell is removed from the mold, releasing it from its constraints, it deforms until
a new equilibrium configuration, which we refer to as the deformed, or current, configuration, is attained.
The deformation is assumed to be described mathematically by a one-to-one invertible mapping f that maps
the body point located at P of the reference configuration C to a new point p = f (P) The set of image
points of f defines the deformed configuration D. Varlables that refer to points of this new configuration
will be denoted by lower case Latin letters, e.g., z® = {z',22%,23} = {z,y, 2} are Cartesian coordinates, and

¢® = {d*,¢%,¢°} = {r,8,z} are cylindrical coordinates on the deformed configuration. Thus, in terms of
these cylindrical coordinates, the mapping p = f (P) is coordinatized by

¢*(p) = ¢*(F(B)) = (¢ /)(B) = F*(P), G.1)

where the functional compositions ¢° o f f @ deﬁne the cylindrical component mappings of the mapping f
Assuming the arbitrary point P to be coordinatized by the cylindrical coordinates Q4 = {R 6,7z } on the
reference configuration, equation (3.1) can be written as

*(p) = °[Q'(P),Q*(P),Q°(P)] (32)
It is more convenient, however, to relate points of the deformed configuration to points of the reference

placement S. Each point P of C is the image of some point P of S via the mapping P= ¢(P). This mapping
can be used to express the actual deformation of the shell in terms of points of the reference placement, viz.,

p = F(B) = F46(P)) = (Fo4)(P) = £(P), (3.3)



where the functional composition f = fc ¢ defines a mapping from the reference placement to the current
configuration. The three mappings we have introduced are illustrated in Figure 4. Thus, cylindrical coordi-
nates of points on the current configuration are given in terms of the cylindrical coordinates Q* = {R,©, Z}
on the reference placement by

¢*(p) = f°[Q'(P),Q*(P), Q*(P)], 3.4)
analogous to {3.2).

Reference Configuration Deformed Configuration

Reference Placement

Figure 4: Mappings relating the reference placement, reference configuration, and deformed configuration.

The position vector of a material point in the reference configuration S of the coated membrane is given
in terms of coordinates on the reference placement C by equation (2.8), repeated here:

X = REg + [[(R) + Z]Ez. (3.5)
From (2.3}, also repeated here:
Ep = cos0i +s5in8j, Eg = —sin®@i + cos9j, Ez =k, (3.6)
we obtain the differentials of the basis vectors, expressed in terms of the same basis vectors:
dEp = dOEg, dEg = —dOEpg, dEz = 0. 37
Using these, we find for the differential of the position vector:
dX = dREg + RdO®Eg + [dZ + T rdR]Eg. (3.8)
In (3.8) we introduce the differential forms Qg = dR, Qe = RdO, and Qz = dZ, to write it as

dX = QrEg + QoEo + [z + T rQr]Ez = Q4E4 + I Qg Ez, (3.9)

where the usual summation convention on repeated indices is to be understood, as in the first term of
the second equality of (3.9), unless otherwise stated. Thus, the differential forms Q4 can be written as
Q4 = HadQ* (no sum on A), where Hg =1, Ho = R, and Hz = 1 are referred to as scale factors.




The position vector of a point on the deformed configuration is given in terms of its cylindrical coordinates
by
v X =rcosfi+ rsindj + zk = re, + ze,, ' (3.10)
where
e, = cosfi + sinfj, es = —sinfi + coshj, e, = k. (3.11)
Similarly tb (3.9), the differential of this position vector can be written as
dx = w,ye,, (3.12)

where w, = h,dg® (no sum on a) are differential forms on the deformed configuration (with h, = h, =1,
ha = 7‘).
From equation (3.4), we obtain

_ o

A
" = 55xdQ*,
or, replacing coordinate differentials by their respective differential forms,
he Of°
Wa = ﬁaj%ﬂ“ = FyaQ4, (3.13)
where
= ha 0f° . A
Foq = H, 004 (no sum on either a or A), (3.14)

are the elements of the matrix F' of deformation gradients from the differential forms on the reference
placement to differential forms on the deformed configuration.

The displacement of point P of the reference configuration to point p of the deformed configuration is
defined by the vector field

u=x - X. (3.15)
From this relation we obtain
dx = dX + du. . (3.16)

If we write the displacement field u in terms of its components Uy in the orthonormal cylindrical basis of
the reference placement, i.e.,

u=UgrEgr + UsEe + Uz E_, . (3.17)

where the components U4 are assumed to be functions of the reference placement coordinates {R,©, Z}, we
find for its differential:
du = (UR,RdR-i-UR,ed@—i-UR,de)ER + UrdEg
+ (Ue,rdR + Ue,0d® + Us,zdZ) Ee + Ue dEg
+ (Uz,rdR + Uz,ed© + Uz 2dZ)Ez,

= [UR,RQR + (-URLR_UQ) Qo + UR,zQz:I Eg
+ [UG,HQR + (@g—‘gﬁ) Qe + Ue,zﬂz] Ee
-+ [UZ,RQR + (ULR’G) Qe + Uz,zﬂz] Ez, (3.18)
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where Ug,p denotes the partial derivative of U4 with respect to Qp. This can be written, using the
summation convention, as

du = HspOQpE4, 3.19

where Hyp = Uy,p are the elements of the matrix H containing the components Ug;p of the covariant
derivative of u, distinguished by a semicolon in place of the comma. Explicitly, we have

Urr (Ure-Us)/R Ugz ;
H = |Us,r (Us,e+Ur)/R Usz|. (3.20)
Uzr Uze/R Uzz

The Green-Lagrange strain tensor E is defined by
_ 1 5 5\ 17,3 =
=§(dx-dx—-dX-dX)—Q(dX-du—{-du dX + du du), (321
where (3.16) was used to get the second equality. From (3.9) and (3.19), we have
di -du = (Qc Ec + P,RQR Ez) cHapQlgE4s = (HAB + T,RHZB&&R)QAQB,
after relabeling of dummy summation indices, and similarly,

du-dX = HsgQpEs - (QcEco + T rQlgEz) = (Hpa + T rHza0R)0405.

Substitution of the last two results in (3.21) yields

1 : :
E = §(HAB + Hpa + U rHzp0ar + T rRHz408R + HoaHep ) Qa0 = Eap 0405, (3.22)

where Egp = (Hap + Hpa + T rHzpbéar + T gHzadpR + HcaHep)/2 are the elements of the Green-
Lagrange strain matrix E. Carrying out the algebra, we obtain the following expressions for the components
of the strain tensor in cylindrical coordinates on the reference placement:

L
Err = Urn + TaUzn + 5 (Ugg + Udp + Uzz)s (3.23)

Ure —Us)? + (Uso +Ur)? + U2
Fop = Vo2 + Ur 1 1(Ure—Us)® + (Uee +Ur)* + Uge ’ (3.24)
R 2 R?
Bzz =Uss + 2 (U2, + U2, + U2 3.25
zz = Uzz + 3 rRz tVUegz +Uzz}), (3.25)
1 U - U U, — U, rU
Fre = |Uon+T,nosd 4 Ure—Ue , UnrUno=Uo) +UorlUoe +Un) + UzrUze)| (5
2 R R R
1 U. - ‘
Foy = : [Ue,z + zie + Urz(Ure —Us) + Ue,;.}gUe,e +Ugr) + Uzz Uz,e] ’ 327

1
Egpz = 5({}&2 +Uzr + T RUzz + UrrUr z + Uo,rUs z + UzrUzz), (3.28)




where Egr = Ere, Eze = Eoz, and Ezr = Egz, i.e., E is symmetric. It is important to note that we
are here taking over from the classical theory of laminates the fundamental assumption that the displace-
ment components, hence the strain tensor components, are continuous through the coated membrane shell
laminate. :

Using (3.12), (3.13), (3.9), and (3.19) in (3.16), we obtain

FapQpe, = QaE4 + T rROrEz + Hap0pE4 = (04 + T'\r0azd8r + Hap)(BEa4,
from which follows the useful relation:
€. = (648 + I'\r6az08r + Hap) (F")B.Ea = Kap(F')B:Ea = OacEa, (3.29)
where
Kap = 04 + ' rROAZ0BR + Hys, Ousc = Ep-e, = Kap(F')ga. (3.30)

The matrix O with elements defined by (3.30) must be orthogonal, satisfying OTO = OOT = I (where
the T-superscript denotes a transposed matrix), since both bases {e,} and {E4} are orthonormal. It is an
example of a shifter [3, p. 9], in this case from one orthonormal basis to another. Assuming both bases to
have been chosen as right-handed, the determinant of © must be 1, i.e., det(O) = det(OT) = 1. From the
matrix form of the second equation of (3.30), i.e., O = KF~! = F = OTK, it then follows that

J = det(F) = det(K), (3.31)

where J = det(F) is the Jacobian determinant of the matrix of deformation gradients. It is easy to show
from (3.6) and (3.11) that the shifter from the orthonormal cylindrical basis on the reference placement to
the orthonormal cylindrical basis on the current configuration is given by

cos(f—~©) sin(§—©) 0
O=|-sin(@—0) cos(6—-0©) 0]. (3.32)
0 0 1

‘Since F = OTK we obtain, using (3.30) and (3.32):

cos(§—0) —sin(6—-0) 0 1+ Ug-r (Ure —Use)/R Ug,z
F = |sin(f—-©) cos(6—-0) 0 Us,rn . 1+({Uee+Ur)/R Usz |, (3.33)
0 0 1{ |[Tr+Uzr Uze/R 14+Uzz
which yields
F.r = (1+Uggr) cos(8 — ©) — Us g sin (6 — ©), (3.34)
Fro = (@R:—gﬁ) cos (6 — ©) — (1 + ge—%ﬂ) sin (6 — ©), (3.35)
F,z = Up,z cos(§ — ©) — Ue,z sin (6 — ©), (3.36)
Fyr = (1+Ugg) sin(d — ©) +Ug,p cos (6 — ©), (3.37)
Feo = (-UR’GR%US) sin (6 — ©) + (1 + Ue,_e;lfﬁ) cos (6 — ©), (3.38)
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Fyz = Up,z sin #-0)+ Ue,z cos{8 — 0), 3.39)

U
Fr =Tr+Uzr, Fe= 22, Fuz=14Uzz (3.40)
Note that dv = JdV, where dV is a volume element on the reference placement and dv is a volume element
on the current configuration. In order for the matrix F of deformation gradients to be invertible, we disallow
the possibility that J = 0. We also disallow the possibility that J < 0, as that would imply that a volume
element could have a negative volume. Thus, we require that

J>0, (3.41)
where, from (3.30) and (3.31):

Use+U Usoe+U U
J=14+Uggr+Uzz+ 58 L ( 8 R) Uzz— —@Ue,z+UR,RUz,z

R R R
Use +U, Use+U U
+ (2R ypp+ (22 2R  yp Uz z — ~Z2Us, zUr,r
R R R
Une — U Ur,e — U Ure = U
(2, \Uon— (B2 \UopUzz + | 222\ Us 2T r (3.42)
R R R
Une —U Us,e +U
+ (——————R’GR e) Ue,zUzr—UrzlU' r—UzrUgz - (ie—R_j) UrzT.r
Use +U. U

4 Equilibrium Equations

" Equilibrium of a deformed body requires that both the net force and net moment of force on any part of the
body vanish. The vanishing of the net moment is well-known {o imply the symmetry of the Cauchy stress
tensor o (our notation for stress tensors follows that of References [4, pp. 134-136], and [5, Chapter 4]).
Here, we begin with the force equilibrium equations written in terms of the Cauchy stress tensor, and then
reformulate them in terms of the first and second Piola-Kirchhoff stress tensors. Let P denote the volume
of an arbitrary part of the coated membrane in its plate-like reference placement, and denote by 8P the
boundary surface of this part. Under the deformation f defined by (3.3), P is mapped to f(P), bounded
by the surface 9f(P). In the presence of a gravitational body force f;, force equilibrium of the arbitrary
deformed volume f(P) requires that

% o-nde + / fodv = j{ OapNp € da + f pgdv = 0, 4.1
8f(P) £(P) af(P) £(P)

where 0 = ogpe.€p, N = nce, is the unit normal to the deformed surface, p is the mass density of the
material, and g = ge, = gEz is the gravitational acceleration (assumed to act in the “up” direction along
the positive Z-axis in Figure 2), expressed in the orthonormal cylindrical bases. The surface integral can

be written in terms of quantities on the reference placement using a version of Nanson’s formula (see, for

example, [6], p. 249, or (7], p. 88), viz.,
neda = J(F™1) 4, NadA, (4.2)

where the N4 are components in the orthonormal cylindrical basis of the unit normal N to the surface
element of area d4 in the reference placement. The volume integral is transformed to one over the reference

i1




placement volume by the substitution dv = JdV, where dV is the reference placement volume element.
Making these substitutions in (4.1) yields :

f Oab Ny € da +/ pge,dv =}{ a,,,,J(F"l)AbNAeadA +/ Jpge,dV
8f(P) £(P) oP 1(P)

E% P,4Nye,dA +/ pogedV =0, (43)
oP f(P)

where po = Jp is the mass density of material in the reference configuration, and
Pan = Joos(F 1) s, 4.4

are the components of the nonsymmetric first Piola-Kirchhoff stress tensor P, which appears naturally in
transforming from deformed configuration surface elements to reference placement surface elements. How-
ever, (4.3) is expressed in term of components along the deformed configuration basis vectors e. The second
Piola-Kirchhoff stress tensor S arises naturally by using (3.29) to shift to components along the orthonormal
cylindrical basis vectors Ep of the reference placement, obtaining for the surface integral in (4.3):

f PoaNaesdA = ¢ PuaNaKsc(F-Y)c.EpdA = f KsoSoaNAEsdA, 4.5)
oP 8P

P

where we identify
Sca = (F)caPar = J(F)0a0as (F 1) as : ‘ (4.6)

as the components of the second Piola-Kirchhoﬂ' stress tensor. Thus, we can write (4.5) as

P,4Nye,dA = KpcScaNasEpdA = TeaNAEgdA, @.7
&P P oP

where it was convenient to introduce yet another (nonsymmetric) stress tensor T with components defined

by
Tps = KpcSca = (8sc + T ,réBz0cr + Hpc)Sca. 4.8)

Using (4.7) in the force equilibrium equations (4.3) yields

TgaNsEpdA +/ pogEzdV = 0. : 4.9)
8P (P

(P

From (4.9) we infer that, just as the equations of equilibrium in terms of the Cauchy stress follow by an
application of the divergence theorem to convert the surface integral on the deformed configuration to a
volume integral, yielding from (4.1) local equilibrium equations of the form

Oabip + P9 0oz = 0, (4.10)

where the left-hand side includes the covariant divergence of o in cylindrical coordinates on the deformed
configuration, so also must the nonsymmetric stress tensor T satisfy local equilibrium equations of the form

TaB;B + pogdaz = 0, 4.11)

where the left-hand side includes the covariant divergence of T in cylindrical coordinates on the reference
placement. Taking into account the nonsymmetric nature of the components T4, the component equations
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of equilibrium in the radial, circumferential, and axial directions, respectively, thus have the same form as
those for the Cauchy stress in cylindrical coordinates (see, for example, Reference [8], p. 306):

1 1 .
Trr,R + }—BTRe,e + Trzz + R (Tarr — Tee) = 0 ...(radial), 4.12)
1 1 . .
Terr + ETS@,’G + Toz,z + B (Tor + Tre) = 0 ...{circumferential}, 4.13)
1 1 .
Tzrr + }—%Tze,e + Tzz,z + gTZR + pog = 0 ...(axial). 4.14)

The definition (4.8) has the matrix form T = KS, hence can be written as

1+ Ugnr (Ure —Us)/R Ur,z Srr Sre Srz '
T = Us.r 1+ (Use+Ur)/R Us,z Sre Ses Sezl, 4.15)
Tr+Uzr Uze/R 1+Uzz| {Srz Sez Szz

where we have used the symmetry of the second Piola-Kirchhoff stress tensor in writing this. Carrying
out the matrix multiplication, we obtain the following expressions for the components of T in terms of the
components of S and the displacement vector components and their derivatives:

Trr = (1 +Ug,r) Srr + % (Ure —Ue) Sre + Ur,z Skrz, : (4.16)
Tre = (1+Ug,r)Sre + 31!5 (Ure —Use) See + Ur,z Sez, (4.17)
Trz = (1+Ugr)Srz + —% (Ure —Use) Sez +Ugr,z Szz, (4.18)
Tor = Ue,r Srr + :1 + -é— (Us,0 + UR)i Sre + Ue,‘z Srz, : 4.19)
Toe = Ug,rSre + :1 + ;% (Ueo + UR): See + Ue,z Sez, (4.20)
Tez = U, Srz + :1 + = WUep+ Ua)i Sez +Ue,z S22, @42y
Tzr = T,r+Uzr)Srr + %Uz,é Sre + (1+Uz,z) Sraz, 4.22)
Tze = (T,r+UzRr)Sre + %Uz,e See +(1+Uz,z) Sez, ‘ (4.23)
Tsz = (Ur+Uzr) Srz + §Uz6 Soz + (1+Uz,7) S22. (424)
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5 Constitutive Relations

Prior to applying a coating, a non-mechanical thermal stress due to CTE mismatch between mold and
membrane develops as the two cool to room temperature following the annealing process. We denote this
mismatch stress by S7™. A coating of thickness h, is then applied to the constrained membrane, and assumed
to be perfectly bonded to it, hence fully constrained geometrically. The coating typically undergoes some
microstructural change during the coating process, inducing an intrinsic coating stress S®™ (which may be
either tensile or compressive). If the membrane is coated at a temperature different from the temperature
at which the mold is stress-free, a thermal mismatch stress may also appear in the coating.

We assume that both materials are linearly elastic, uniform, homogeneous, and isotropic, and that they re-
main perfectly bonded after removal from the mold (guaranteeing continuity of the displacement components
across their interface). As in [9], [10] and [11}, we have begun with the full three-dimensional Green-Lagrange
strain tensor E4p, including all geometrically nonlinear terms involving displacement components or their
partial derivatives, as shown in equations (3.23)-(3.28). The choice of the Green-Lagrange strain tensor
dictates a material rather than spatial description of the deformation, and we assume that in each of the
two materials we have a simple uniform, linear, isotropic constitutive relation between the Green-Lagrange
strain tensor and the second Piola-Kirchhoff stress tensor:

s
Sapi = S éaB + Esp + ——— (Erri + Eeei + Ezzi) JAB], G.1

E,' [
1+w) 1-2u;
where the subscript ¢ denotes the ith layer of the laminate, and the constants E; and v; are Young’s modulus
and Poisson’s ratio, respectively, of the component materials. The first term in (5.1) is a simple way of
including the residual or non-mechanical stress in material 7, which is assumed to be uniform and isotropic
with constant value S'™. It is a slight generalization of the constitutive relation given by Fung [2, pp.
354-355] intended to account for a thermal stress, in which case it is given by
E;
nm __ ____"t = am

Sz - 1— 2Vi € (5'2)
where €™ = a; AT is the thermal strain, o; is the CTE of material ¢, and AT = T — Ty is the temperature
deviation from some reference temperature Tp. It is assumed here to include possible intrinsic stresses in
the materials so that, in general, the residual stress SP™ is a sum of intrinsic and thermal stresses. The
component forms of the constitutive relations (5.1) can be written as

Srri = S'™ + & [(1—v;) Egp + vi(Eee + Ezz)], (5.3)

Seei = S + & [(1—v;)Eee + vi(Err + Ezz)], 54

Szzi = SI™ + & [(1 - v:) Ezz + vi (Err + Eos)], 5.5)
Srei = GiEpe,  Srzi = GiErz, Sezi = GiFEez, (5.6)

where we have introduced for convenience:

Ei Gi = Ei

£iE ————, .
P+ m)(A-2v) 1+

()]

6 Boimdary Condition of Pressure

To formulate appropriate boundary conditions for equations (4.12)-(4.14), we consider a shell that is in
equilibrium under a difference in hydrostatic pressure on the images (under the deformation f) of the reference
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placement faces Z = h/2 and Z = —h/2. Such a pressure is always normal to the deformed surfaces, and
oppositely directed to their outward unit normal vectors. Thus, traction boundary conditions are most easily
stated in terms of the Cauchy stress tensor on the deformed surfaces:

or.nt = —pFn* = abnidai = _p* nfdaief, 6.1)
where the + and — superscripts denote evaluations either on the planes Z = h/2 and Z = —h/2, respectively
or, as in (6.1), on their images under f, and we have included for convenience the area elements da® in both
sides of the second form of the boundary conditions. Using (3.29) and (4.2), the second equation of (6.1)
can be reformulated in terms of quantities defined on the reference placement as follows:

ST (g, NEdA® Kgp(F-)5,B5 = - p* JE(F-1), NEdA* Kdp(F-1)3 B,
which reduces, after applying the definitions (4.6) and (4.8), to
TEANG = —p* J*Kgp(F )5, (F ) LN 62

The matrix products on the right-hand side of (6.2), viz., KF~'F~T where F~7T is the transposed inverse
of F, are easily manipulated to the identity KF~*F~T = K~7 | using the relation O = KF~! to replace

F~1, and the orthogonality of the shifter . Thus, after a relabehng of indices, the boundary conditions
take the form

TipNE = —prJE(KT)IgNE. (6.3)

However, we note that the eutward unit normals to the faces Z = h/2 and Z = —Ah/2 are Nt = Ez and
N~ = —Eg, respectively, so that Nz = +8pz on both sides of (6.3), hence (6.3) reduces to

Ti, = —prJEEKT)%,. (6.4)

Recalling that J = det(F) = det(K), it follows that J*(K~T)* is just the matrix of cofactors of K*. Thus,
according to (6.4), elements of the third columns of the matrices T+ and —p*J*(K~7T)* must be identical,
yielding the final forms of the boundary conditions of pressure:

U:!: Ui U:i: + U:f:
TE, = —p* [————Z'; =R _Ufge (1 + £ _"©8 o 211, (6.5)
U%e U}%e - Uei
Tez = o~ I:_R_’i (1 * Uiﬁ) + U'%*R (T ' ©6)
Ut +UZ Ute -US
T7z = —p* |1+ Uk pR) (1 + —ERi_ee> ~Usr (ﬁR?i : ©7

7 On the Derivation of Theories of Two-Dimensional Elastic Bodies from the

Three-Dimensional Theory of Elasticity, Using the Method of Asymptotic
Expansions

We introduce dimensionless caordmates {p,¢), and scaled dlspla,cement components (U Vv W), a scaled
reference configuration function I‘ scaled stress components s ABi, scaled residual in-plane stresses S;, scaled
pressure loads $*, and a scaled gravitational body force po;§, defined by the following relations:

R = ap, Z = h{ = €a(, 1.1
= s’"af, Uz = emaﬁ\f, Ur = sfaff, Usg = e“gaf}, (7.2)




Srri = €":iSrni, See: = £"%:S00:, Srei = €"ZiSrei, Spm = ey 8pm, (7.3)
Srzi = €’SiSrzi, . Sezi = €*%iSezi, (7.4)
Szzi = €9%:8zzi;, p* = e9BEpE,  appig=Tie'y, (7.5)

where the X; are two arbitrary constants with dimensions of stress (£+ = £,,and £~ = £.), and € = h/ais
the (assumed to be small) scaling parameter. The exponent values are arbitrary at this point, but typically
satisfy the inequalities r < m < £ < n <t < p < ¢q. It should bé noted that the original variables are
functions of R, ©, and Z, e.g., Ugr = Ur(R, ©, Z), while the scaled variables are all functions of p, ©, and ¢,
e.g., U=0 (p,0,¢) = (1/ae’)Ur(ap, ©, hs(). From these definitions, we obtain the following expressions for
the partial derivatives of the displacement components, and the ordinary derivative of the surface-defining
function I':

Upr = Etﬁ,p, Ure = Elaﬁ,e, Urz = Et—lﬁ,c, (7.6)
Uor =€V, Use =¢lale, Usz=¢"17,, (1.7
Uzr = €"W,, Uze =¢maWe, Uzz=¢e™"'W,, Tr=¢T, (1.8)
Substitution of these expressions into equations (3.23)-(3.28) for the strain components yields:

' ~ -~ _—— 1 —_ ~ o~
Epp =60+, W, + 5 [#mW2 + 2 (02 + V3] (79
Eee —_ Et ‘/»e +U + 62m___l§_ + 62[ (U:e V) + (‘/,e + U) , (7'10)

2p? 2p? .
Ezz = €™ W, + ™2 SW2 4 22 2 (02 +72) (7.11)
¢ 2 $ - 2 K9 ¥ ’ °
Epo = %{5 (V,p + Uep— V) 4 gttm P © +E2mVV,pI/V,9
st |Dsle=N+V,Fe+D)|} (1D
p
Eez = % {5“1"7"( + Em}:‘_’f + E.27'!'&—1 W(We + €2£—1 [U,C(U,e - V) :V;((V,e + U)] } , (7‘13)
Epz = ';- [EH Ug+e™ W, +emm 1T, W + 2 1W, W + 6271 (0,00 + 7,V )] N (R T))
Substitution of (7.1)—(7.5) in (3.34)-(3.40) yields for the scaled deformation gradient matrix elements:

Fop = (1+¢€'U,) cos(0—0©)—€'V,sin(0 - 0), (7.15)
F.o = ¢t ({JJ_@_}-_V) cos (0 — 6) - [l + ¢t (%)] sin (8 — @), (7.16)
F.z = El-lﬁ,( cos(f — ©) — s“lf}_( sin (8 — ©), (7.17)
Fon = (1+¢€'0,) sin(6 — ©) + €V, cos (6 — ©), ‘ (7.18)
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Fpo = € (U*ep" V) sin (8 — ©) + [1 +¢&t (E-;ﬂ)} cos (8 — ©), (7.19)
Fpz = €20 sin (6 — ©) + €41V cos (6 — ©), ' (7.20)

re m {17 m W,e m—1 575
F,r=€T,+e™W,, F,g =¢ T, F,z=1+4+¢ We. (72D

(7.22)

Fo 1o n m o] ameie [(To-P\e (PotD)-
+ 28 (9, 0,7 | + 217 : 7 .
p (35’ £ £ ;C)} 5P p N p EY

The scaled expressions for the strain tensor components are to be substituted in the constitutive relations
(5.3)—(5.6). We begin with (5.5) for Szz, from which we obtain

~ ~ —_ 1~ 1/my
e1%:872; = E“’Egsslm + gi{ (1 — f"i) [Em_lw,g + Szm_g-éw’:% + g2t—2 = (U% +V?2 )]

2

2
~  Ve+U o o 1o, W2
+ v; [ef (U,p + —%—) +e™mT W, + 2™ (§W§ + -5'9—5) (7.23)

g (UotVs U=+ e+ D)) 1]
2 2p?

The last two off-diagonal constitutive relations for the out-of-plane stress components yield the scaled rela-
tions:

-~ G' ~ ——— o~ ——— —— e~ ~ o~ ~ o~
€PLiSrzi = ? [EH Ug+e™W,+ e IT W+ 2™ W, W + 271 (U, U +V,V; )] , (124)

—~—

5,80y = & {Eg_igk em ﬂ;e c o WiWo | {U@(U,e —7) + V(W + U)} } 029

2 P P
respectively, and the scaled version of the off-diagonal in-plane constitutive relation (5.6) has the form

e"%:i8rei = % {8’: (i},p + U,ep—— V) + grtm L,We 37’9 + 2™ —-————W"fs

Lo [ﬁp@e -+ 7,V + ﬁ)} }
P

(7.26)
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The final two constitutive relations (5.3) and (5.4) take the following forms:

e”Z,-§RRi = Enzigzzm + & ((1 - lli) {El ﬁ,p + e’+”‘f,pW,p + % [Esz’i + e (ﬁ’zp + ‘73, )] }

i 7i ’“72 7o — T2 & (T )2

+' vi el ‘/:e +U + €2m = + € 21 (Uye V) +2(v:9 + U) ) (7'27)

P 2p 2p
m—1 am—2 1552 2-2 1 (552 | {2
+ M We + € §W + € —(U,C+V,)}),
and
" ~ W 7 — T2 4 (T 72
€"YiSeei = €"LiSI" 4+ &; ((1 - ) { (Ve: U) +e2m 2 + 2 [(U'e Y) 2:2(‘/'6 il ] }

~ ~ o~ 1
+ Vi {Et U,p + €r+mr,pw’p + "2_

[+ e (03, +72)]
Y W2 + g2-2 (U +17§) })
(7.28)

Next, applying the scalings obtained in (7.1)-(7.5), (7.6)—(7.8), and (7.9)—(7.14) to the right-hand sides
of equations (4.16)—(4.24), we obtain the stress components T4p; in terms of our scaled variables:

-~ o o o
Trri = €"XiSppi + e"H'E; (U,pSRRi + SRei) + P13, U (Srzi, (7.29)

| Trei = ‘E" %i8rei + "M E (ﬁ,pgRGi + U’,ep— ?gee ) + et 2,0 8oz, (7.30)
Trzi = €* Si8rzi + €745 (ﬁ,pgRZi + v p Sez: ) +et*971 5,0 822, (7.31)
Tori = €"ZiSpoi + ™ ii (ﬁpgRRi Yo+ ﬁ§ ) +etP1 5.V Spai, (7.32)
Toei = €"TiSoe: + " (ngaei + Ve +ﬁ§ ) +ettP 15,V 8oz, (7.33)
Tozi = €”TiSezi + Pt %; (V,pgnz'i + §SZi) + et 2,V 824, (7.34)

—_—

-~ -~ - — - W - - -
Tzri = €?L;Spzi + ™" 5T ,Srpi + ™" Z; (W,pSnRi + 'Tesnei) + ™ P18, W Srzi, (7.35)

—_—

- -~ - - _~ W - - B
Tzei = €?LiSezi + ™" ;T ySrei + €™ T <W,pSRei + T’eSeei) +e™tP-1 5, W Sezi, (7.36)

—_—
-~

€9%;822: + P ;T ,8pzi + €™P 5 (W,p Rzi + —Wfl;ggezz‘) + ™IS W 82z (137)

Tzz:
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Substituting these scaled expressions in the equilibrium equations (4.12)—(4.14) yields equilibrium equations
in terms of the scaled components of the second Piola-Kirchhoff stress tensor:

~ ~ Uo-V = ~ o~
€" Srri,p + €™ (U,s?SRRi + —%— Ree) +gttrl (U,CSRZi)
!9 p
1 ~ Ue-Vg PN
+ = |e" Sgeie + gntt U SRe; ——See + gttt (U,;Sezg)
4 Iy o K]
~ To-V4 n a
p—1 . p+e-1 + 227 . £49—2 ,
+ € SRZ:,C + € (U SRZ% P GZz) ) +€ (U,c;SEZz) < (738}
+ 5{5" SrRri + gntt (U,pSRR;f + —'—p—-SRe,) + ghtp-l UgSRz:,
ng ntt [ {7 G % Uz Lp—1{7 G
— | " Seei + € VpSrei + Seei | +€ V¢Sezi| ¢ =0,
~ ~ o~ Vot+Us o
" Spoi, + et (V,pSRRi + -2 SRei) + gttt (V,(SRZi)
p o /e
1 ~ PN +U 4 P
+ r e" Seeie + "t (‘[,,OSRei + Seee) 4 ghtrt (T/;gsezs) o
@ ’
~ ~ Vot+lUx -
+ e?7 Sozic + T | V,,Srzi + 2 Sezi| +ette? (V,cszz,') 739
P ) < (7.39)

~

1{ 4 P Ve+Ux4 .
+ ;{5“ Sre:i + "t (V,pSRRi + ,ep Sﬂeé) +eP 1V Spzi

+ [En §Rei + entt (U Sﬁez Ue V§ ) + gbtr1 ﬁ,§§625} } = 0,

p

~ ~ —~ We ~ —
€? Spzip + €™ (T,pSRRs:) 1 gmtn (W,pSRRi + ";?‘Sﬁei) +emtrt (W,CSRZsT)
) 4 » P
1 _ SN — We ~ —
+ 'p' e? Sezie + grtn (P,pSRQi) o +emtn (W,pSReg + —'p’—eSeeg) +gmtrl (W,CSeZi) o
3 ,e ¥

s s e s Wes e
+ &9 1 SZZ'{,.; + 7P 1 (F,pSRZi) c + gmtp-l (W:pSRZi -+ T’eSez,f) +egmte 2 (WCng,') ¢
R " K

——~

1 ~ ~ - — We ~ PN -
+ E [Ep Srzi g™t I‘,,,SRR,' + gmtn (WpSRRi + ";gSRei) +gmtp-l W(SRZ{] + E'tg =0,

(7.40)
where the gravitational body force has been assumed, as stated earlier, to scale as follows:

apoig = Lie'g. (7.41)
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Finally, assuming that the pressures p* scale like the stress tensor component Szz, i.e.,
pt = e9nEpE, (7.42)

our boundary conditions (6.5)-(6.7) take the following scaled forms, after eliminating common factors of & *
on both sides of each equation:

A Lo (U574 I
e S5y + et [U,ﬂ;sgz + (—————’9 p ) ng] + e ULSS,

i osmee | BV W5 (V54 0%) .

= EQ+mp VV,I, — grtmt p* ’

~ ~ A VE+ 0%\ & ~n
PS5, + €t [V,fsﬁz + (GT 55, + 1 VESE,

. s e (o 7.44
w W%Ui - Wt (U:ié —- V:t) ( )

= ettmpE 0 gebmit | O 0 P A P

pE px
€185, + ™ (w{;*;s;gz + =2 ng) T

(7.45)

— ot +£ + 0 o= o 2£ + 0 + © ot
= —elp™ — ¢l <U,p+—p;"“ p= — e \UY ) Vel T =) |7

The method of asymptotic expansions proceeds from this point by introducing asymptotic series expan-
sions in a new parameter § = &* (where p is yet another exponent) for each of the scaled stress tensor
components, as well as each of the scaled displacement components and its partial derivatives. Thus, denot-
ing by % and § any two such components (or partial derivatives of displacement components), we set

g= 02w, T=. 80k (=¢). (7.46)
k=0 k=0

Various theories of two-dimensional-like bodies are obtained by making particular, essentially ad hoc, choices
of the scaling exponents in equations (7.2)-(7.5) and equation (7.46). For example, if we follow Tarn [12] and
setr=m=1,£=n=2,t=3,p=3,q=4, and p = 2, we obtain a generalized geometrically nonlinear,
laminate shell theory (equivalent to von Kdrméan plate theory when specialized to a single material that is
initially flat, so that A, = 0 and I'(R) = 0, and gravitational body forces are ignored). If, on the other hand,
we follow the work of Erbay [11], and set r=m =1/2,=n=1,t=3/2,p= 2,9 =5/2,and u = 1/2,
the leading order equations are a generalization of geometrically nonlinear membrane theory (equivalent to
Hencky-Campbell membrane theory {13, 14] when specialized to a single material that is initially flat, and
gravitational body forces are ignored). We have also found that by settingr =1, m=2,f=n=3,1 =4,
p=4, ¢=25, and u = 1, the leading order results are those of a geometrically linear, laminate shell theory
(equivalent to classical laminate theory [15] when I'(R) = 0), whiler =m =1,£=n=3/2,t=5/2, p=3,
g ="7/2,and p = 1/2, yields a theory of a geometrically linear membrane laminate. These characterizations
of various theories by particular choices of the scaling exponents are tabulated in Table 1. In the Sections
that follow, we develop each theory based on the choice of exponents indicated in this Table, where the terms
"shell” and ”membrane” distinguish the dependence of the leading order in-plane displacement components
on the axial coordinate Z: for a membrane they are independent of Z, for a shell they are linear in Z.
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Geometrically Linear Shell 142 1313 41511
rimifinjtip|qg]|up
Geometrically Linear Membrane 11|21 212132 11¢

Table 1: Values of scaling exponents for various theories.

8 Geometrically Nonlinear Shell Laminate Theory

Following the work of Tarn [12) weset r=m =1, {=n=2,¢t=p=3, and ¢ = 4 in equations (7.2)~(7.5).
Thus, we have

[ =eal, Uz =eaW, Ugr=¢e2l, Us = eV, 8.
Srri = €°:8rri, Seei = £2%:506i, Srei = €%i8gei, Spm = ¢2%,8rm, (8.2)
Srzi = €2%iSrzi, Sezi = £%:8ezi, (8.3

Szzi = €*%:i8zzi, pt = nEpE,

apoig = Tie* g. (8:4)
8.1 Leading Order Results Obtained by Scaling of the Constitutive Relations
Beginning with the constitutive relation (7.23) for Szz, we obtain
~ ~ — — U2 +V2
e'%:8z2: = 25,5P™ + 55{ (1—w) l:Wk + -;—W’% + &2 (—L—z-—’g)il
(8.5)

e 1, Ve+D W2
+ {52 (U,ﬁr,,,w,,, + '2'in + —’—’?l—:—— + 5523) ]} + O(e").

Again following Tarn [12], we set ¢ = 2 in equation (7.46), and find for the product of any two of the
asymptotic expansions (7.46), to tenth order in € (recalling that § = e* = &2):

8= 3 ST E Gk,
k1=0 k=0
= B0 + [Bon) + Enio)] € + [Eoie) + Eoia) + Eeio)] €
+ [Bobe) +Eole) +Zaio) + o] &
+ [Bo)fw +Enie) + Eale + Eeio) + Zoio] €
+ [Bo)fe) + Eayle + Eobe) + el + Zolo + ETo)] €0 + 0(E).

(8.6)
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Substituting in equation (8.5) the asymptotic series for each of the variables, we obtain

64245(0)225 = Ezzislpm -+ gi{(l - Vi) [W(o),( + EW(zo),( -+ g2 (W(l)’< + 2W(0),C W(l)’(

g2, + V3 5 o . . lwe
+ €[00 2 ()¢ +v |0 ©.0 + Lo W(0),0 + §W(20),p ®.7)
Voe+lo W2
+-Qerro  TOe + O(e*).
P 2p

The leading order term of this relation yields our first important result:

W + 5Wane = W0 (2+ W) = 0. @9

" Thus, W(o),c must satisfy either W(o),c =0,or W(o),( = —2. In order to eliminate the second possibility, we
appeal to the form of the Jacobian determinant under the scalings being considered, viz., from (7.22):

210, + ,e: + W (U,p+ R )_W,p ¢~ ’eV,C_F,p .C]

- (B2 E) (e - W= 7) + T2 (R0~ 0,) |

In the limit € ~+ 0, the condition J > 0 implies that we must have W@,C > —1, which precludes the second
possible solution W(o),c = —2. Thus, we must have

Wae=0 = Wo = d(p0), (8.10)

where 0 is an arbitrary function of p and © only. Under these conditions, equation (8.7) reduces, after
dividing through by €2, to
o N — bz, .+ V3
622,'5(0)221- = ZiS?m-l-gi (1 — Vi) (W(l),( + —©@¢ O« ) (0)’()

(8.11)

o 1, Veeth
v (U(O),p+r,pw,p+§w?p+ﬁ;—ﬁ+ 5o ) + 0(52)]

The leading order term on the right-hand side of this equation yields another relation that will be needed
later:

o~ '(72 | +V2 2.§!‘m . 1 V +U
0).¢ (0),¢ i94 Vi (0).8 ()]
== - ————— .(8.12
Waye + 2 A-w)é& 1-u U(O) ot I",,,w,p +3 ¥ + . + 2p (S )

Next, consider the two off-diagonal constitutive relations (7 24) and (7.25) for the out-of-plane stress
components. With the present scalings, we obtain

~ A -~

e2%; SRZz = —G—- [(UC-I-W,,-FI‘,,W( +WPW<) +€2( :PU:C+V:P.‘7»C)]’ (8.13)
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€258 51 = % {(QC+%’§+_W§&> +e? (U,C(U,8~V):Vc(ﬁe+b’})], ®.14)

where a common factor of € was cancelled in both expressions. From the leading order terms of these
expressions, recalling that W(g) (= 0 we obtain the following two equations:

o~

~ R ~ @
Uoyet®, =0, Vgt Te =0,

which can be integrated to obtain
PN ~ . 5 ~ e
Ugy = (p,®) ~ (W,,, and Vg = 5(p,0) — C—p ) (8.15)

where 4 and ¥ are arbitrary functions of p and © only. Thus, the leading order results have provided
non-dimensional forms of the well known Kirchhoff-Love expressions for the displacement components.

The scaled version of the off-diagonal in-plane constitutive relation (7.26) reduces under the present
scalings to

i G [ o7 LB D) (Lilla=ieaa)|

where a common factor of é? was cancelled. Thus, to leading order we obtain

-~ G" -~ i} ’6_? f ﬁ’ ﬁ ﬁ,
LiSoRrei = & (V(O);;? + -9 5 L ’”p ° 4+ ’pp 9).

Introducing an in-plane strain component €gg defined by

.1 o-Vo T,5e @,be)
6385'2- (V(G},p (0) (0)+ sWe + Y ,8)’

p p p
1. de-% T,o ) m ) (8.16)
= Llg, 4=t Do @, ‘8~2£( ,pe_,_.2§> , )
2 P p p p p
23?16 ’CERSS

where we have introduced ¢-independent terms in the last line defined by

1(. tde-9 T,be e - B0 We
Pat] — 3 [ ihed) [t —_ s& A
o == |T,+ + + , kre = - = 8.17)
RO T2 ( T p p p P
we can write this constitutive relation as simply
2iS0)rei = Gitre. (8.18)

The final two constitutive relations (7.27) and (7.28) take the following forms under the present scalings:




and
~ ~ & . w2
e*%;iSeei = €°5iSP™ + &-{ (1-v;) €l (K9+—U + __S_)
P 2p
(8.20)

A a1 = = 02 4+ V2
+ v [62 (U,,, +T W, + EW,";,) +W¢ + %W} + €2 (———2—5) ]} + O(e*).

The leading order terms involving I’/V\,( in these expressions vanish according to (8.8), and (8.12) can be used
to replace the second-order terms involving W) ¢, yielding

a & ~ [ z:5pm Vi o o]
ZiSo)rri = TiSi™ +5i{ (1-v:)érr+ vi | €0 — a : :,,)g. = 1. (€rr +%e) }, . (821
— Vi) — ¥
and
g & . [ =8 w
T:See: = TSy + &'{ (1-v;)€eo + Vi | €RR — T-—w& 1-wn (€rr + eee)W } (822)
1 1 1

where we have introduced scaled in-plane strain components égr and €ge defined by

- PN a A 1. ~ & o~ 1. - ~
€rr = U),p + T, + '2’w,2p =Tp + Lpl,p + Ew?p - (@,pp = €rp — Ckrr, (8.23)
~ Vipe + Uy | B _e+i , W% (ﬁp ﬁee) o 7
oo = —————L 4 o = —— 4 = —L 4 == = Ee — (koo (8.24)
p 20° p 2 "\ T o0 = ¢
The (-independent terms appearing in the last two equations are defined by
- 8 - 1. -~ .
&r =10, + T @, + §w,2p ) krr = W pp, (8.25)
and
~ ~ ~2 —~ -~
o . Yvetu We ~ _ w, w,e0
€ge = —'—p“— + ﬁ ) kee = = 4+ p2 (8.26)

Replacing &; by its definition (5.7) in (8.21) and (8.22), and simplifying the results, yields

a a E; . -
ZiSorri = BiSi+ 73 (€rr + vi€eo ), (8.27)
i .
a a E;, . ~
TiSeee: = ZiSi+1—3 (€ee + Vi€RR), (8.28)
1
where
o _ 1=z
S = 728 (829)

We conclude this Section by rewriting the important results in terms of leading order variables that are
‘functions of the physical coordinates R, ©, and Z, viz., .

u = €e2l, v=c¢edad, w=eald (8.30)
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— . -~ 5 w
U(g)z = EGW(G) = w, U(g)R = ESGU{Q) =u - Zw,R, U{o)e = EQG,V(Q) =y - Z’—’g (8.31)

R H
So)rei = 522i§(0)n6i = Gie¢re, (8.32)
So)rri = €2ZiS0)rri = Si + 1—_‘;}—2 (err + vieoo ), (8.33)
i
Soeei = e2TiSpyee: = Si + 1—_%-2- (eee + vierr), (8.39)
3
where
~ 1 ue—v T'gwe  wgrwe WRO We
—_ 2 -—— 3 3 ¥y ) b} - PR LA - 0 - .
€ro = €%€Re 2[v,g+ g+ + 2R gz ( - Rz)]_eﬂe Zkre, (835)
. 1
€RR 552’5‘33 = uR + I‘,Rw,R + -é'w?R — Zw,RR = E{}RR - ZkRR;( (8.36)
= g?¢, = ’U..__._’s tu .ﬁig _ ._ﬁi’_}i w.ee = 0
€op = E°Cpp = R + 2R? ( R +’ 2 ) = ege — Z koo, (8.37)
the Z-independent terms of the last three equations are given by
1 ueg—v I gw w RW w w
0 _ © LRW.© LRW.O _ RO 8
= = = e -3
€Ro 2(’3,3-1- R TTRrR TR ), kre ® TR (8.38)
1
€xp = ur + Trwp + §W?R »  krr = wpn, (8.39)
2
s _ Vetu Weo _ WEg wee
€00 = o — + 2R koo = = + T (8.40)
and in (8.33) and (8.34) we have introduced the in-plane residual stresses defined by
Size?%i§ = Lo Wongm Lo Wignn B e, (8.41)
1—y; 11—y 11—y

where the last equality of (8.41) follows from (5.2), and refers to the particular case where the residual
stresses are purely thermal in origin. ~

Note that only three in-plane constitutive equations (8.32), (8.33), and (8.34) are obtained as leading
order results, from which the associated in-plane stress components can be determined in terms of the
displacement components. The other constitutive relations provide the leading order (Kirchhoff-Love) forms
(8.31) of the displacement components, but the associated out-of-plane stress components will be shown
later to be determined in terms of the in-plane stresses via first integrals of the equilibrium equations.
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8.2 Equilibrium Equations to Leading Order
Under the scalings of this Section, the equilibrium equations (7.38)—(7.40) can be written as

. ~ A To—-V - ~
&® Srpi,p + € (U,pSRRi+ ,ep SRei) +¢t (U,CSRZi)
)
P

~ ~ A Uo—-V A ~ -
[Ez Sreie + et (U,pSRei + 'ep See,-> +¢&t (U,<Sez,') 9i|
e 3

)

+

=

~ ~

Ue-V

+ €2 Spzic + €t (ﬁ,pé‘m + §ez¢) +et (17’,c:'§zzi),C (8.42)
1(

~ ~

1 ~ PPN U Va ~
+ ;{62 Srri + €t (U,pSRRi + 'ep SRe,') + ¢t U,Srzi

o ~ A Ve+T A o .
- [62 See: + & (V,psnei + 'e:USeei> +et V,csezz‘] } =0,

‘?e—i—ﬁ

g’ §R9i,p + & (f},pgRRi + §Rei> +¢&t (V,ggRZi)p
»p

1 ~ ~ A Ve+U A , ~ ~ :
+ = |2 8eeio + €* [ V,8Rei + 2 Seei | +¢* (V,gSezz')
P P e ©

~ ~

A ~ A Vot~ ~ A
+ €?Sezi¢ + € (V,pSRZi + ,ep SeZi) +¢t (V,cszz,-) ]
< !

(8.43)

1{ , 4 ~ Vo+U4 ~
+ ;{62 Srei + ¢! (V,PSRRi + ,ep SRei) +€* V¢ Srz:

- ’ ~ -~ ﬁ — v o~ o~ - '
+ [62 Srei + ¢ (U,pSRei + ’ep Seei) +et U,(Sezi] } = 0,

—

~ -~ -~ _——— P W - - -~
€ Srzi,p +€° (F ,pSRRi) Jt €2 (VV,pSRRi + T’esnei) +é (W,CSRZi) ,
b1 ,p 1

——

1 ~ - A —_ A Weo ~ — .
+ lss Sez;‘,e +é&8 (I‘,,,SRG,-) + &8 (Wpsﬂei + —'eSeei) + €8 (I’V,(SeZi) :I
© P o ,©

p
(8.44)

3!

- - —_ Weo ~ —~ A
+ €% 8zzic+¢° (F,pSRZi) ) + 8 (W,pSRZi + 7’65921') + €8 (W(SZZi) ]
. ,( )

1 ~ = a = We 5 = -
+ r; [Es Srzi +€* T ,Srri + € (W,pSRRi + —I;—GSRei) +&° VV,(SRZ:] +e¥g=0.
To leading order, using the earlier result VV\(O),( = @¢ = 0 in the third equation, we thus obtain

& J 1PN a 1/4 ~
S(©)RRi,p + ;S(o)nei,e + So)rzic + P (S'(o)nm - S(o)eei) =0, (8.45)
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~ 1~ ~ 2~
Soyrei, + ;S{G)Gei,e + Syezic + ;S(e)aes =0, : (8.46)

A,B

& o s 1. =~ Be -
[w,pS(O)RRi + TS(G}Rei + S(0)rzi) s T p I:w,ps(ﬁ}ﬂeé + Tes(o)eei + S(e)ezs:{

R R © (8.47)
. Bog : 1. & . Goa o A
+ [w,ps(e)nze + —p-S(o)em + 5(3)225} + p [w,pS(O)RRi + —p—S(e)Rei + S{o)nm] +39=0,

,C

where we have introduced in the last equation a new p and ©-dependent function & defined by
&(p,8) = ©(p,®) + T(p). (8.48)

8.3 Scaled Boundary Conditions of Pressure

The boundary conditions of pressure, equations (7.43)—(7.45), are given under the present scalings by

5 s U -v=\ .
e84y + & |ULSE, + (—p—) 562

+ 8 UESE,

p,

o~ o~ —~ ~ 8.49
ssn o [TEDE - WE(P5+0%)] ¢4
=epTW, —¢€ ot '

. I VE+ %\ . e
258+ T35+ (22T ) 3, ]+ onss,
v Wt _ e (f;»i _ f}:}:) (8.50)
— St ,e 7 ’e 5P iy ,e ~t
=¢&p p—:i:' Te€ Pi 2, .
~ — W= L
et S‘:th + gt (Wﬁs;%; + p—fSé?S) + gt W{?S%z
~ ~ ~ ~ ~ ~ (8.51)
_ ~ VE4UE N - ViUt . Ut — v+ R
= —54pi — {;‘6 (U,i + ’_ep_i__) pi _ ES [Uj’: ( ,epi _ ‘V,g: ,epi pi.
To leading order, they reduce to
o+ _ ot _ o+ _ ot
Sorz =0 Sgez =, Sgyzz = —B%, 8.52)

-~

where the derivation of the last result for S’(:g) zz required the previous two results for :S%) rz and §(i(,)e 7

and the fact that W(%),C = 0. Stated in terms of physical functions of the physical coordinates, these take
the forms

Sorz =0 Siez =0, S5, =etzt S6yzz = —€*TF 5t = —p*. (8.53)

8.4 Leading Order Equilibrium Solutions for the Out-of-Plane Stress Components

In terms of leading order physical functions of the physical coordinates R, ©, and Z, the leading order
equilibrium equations (8.45)-(8.47) are given by:

1
Sw)rzi,z + So)rRi,R + 7 (Seyreie + Swoyrri — Syee:) = 0, (8.54)
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1
Soeziz + Soreir + 1 (Soyeeie + 250)rei) = 0, (8.55)

w 1 w
[W,RS(O)RZi + 7’295(0)ez¢ + 3(0)zz¢] - [w,RS(O)Rei + —1’225(0)995 + S(O)GZi] o

(8.56)
w 1 w
+ [W,RS(O)RRi + __&G_S(O)Rei + S(O)RZi], rT R [W,RS(O)RRi + ?es(o)nes + S(O)RZi] + poig = 0,
where
Ww(R,0) =cad(p,0) = w(R,0) + I'(R). (8.57)
~ Equations (8.54)-(8.56) can be rewritten as .
1
So)rzi,z + R [(RS(O)RRi)’R - Swyeei + S(O)Rei,e] = 0, (8.58)
1 1
Soyeziz + §§(R2 S(o)rei),R + "ES(O)Sei,B = 0. (8.59)
and
w 1 w
[w,ns(o)nz#—égs(mez; + S(O)ZZi] ;TR [w,RS(O)Rei + —;S(o)eei +5(o)em] o
: ’ (8.60)

1 1
+z (RS(O)RZ;’)’R +7 [R (w,RS(o)RRi + w—}’zes(omei)]ﬁ + poig =0,

respectively. Now, according to (8.32)-(8.40), S(o)rei» S(o)rRi: and S(o)ee; are linear functions of Z, with
coefficients depending only on R and ©, hence equations (8.58) and (8.59) can be written as

S©)rzi,z + aoi(R,0) + Z a1i(R,0) = 0, Soeziz + boi(R,©) + Z b1;(R,0) = 0, (8.61)
respectively, where agi, a1i, boi, and by; are rather complicated Z-independent functions. These two equations
can be easily solved to obtain
Z2 Z?

Soyrzi + Zaoi + - o = FRrzi, Syezi + Zboi + Tb” = Fezi, (8.62)

where Frz; and Fez; are arbitrary functions of R and © only. Applying the first two boundary conditions
of (8.53), we obtain from the first and second equations of (8.62):

h h? h h?
Frz, = 50'03’}' E’alsy Frz. = _E aoc + ""S—alc, (8.63)
and
Foze = Mbos+ Wby, Foze = - bt b 8.64)
8Zs = 2 0s 8 18) ©Zc = 2 0c 8 lcs .

respectively. For a two-layer laminate, the solutions for the stress components in the two materials can thus
be written as

h 1 h 1 .
So)rzs = (—2' - Z) ags + 3 (h2 - 422) Qg S©)rze = — (5 + Z) agc + 3 (h2 - 422) aic, (8.65)

and

h 1 h 1
S(O)SZa = (-é- - Z) bos + 'é (h2 - 4Z2) bis, S(O)SZc = - (5 + Z) boc + g (h2 - 4Z2) bie, (8.66)
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respectively, where ¢ = 1 = ¢ denotes the coé,ting and i = 2 = s denotes the membrane substrate.

Next, we note that since S(o)rz: and S(g)ez; are quadratic in Z, the axial equilibrium equation (8.60)
can be written as

[o.RS0nzi + 52 S0z + Swzzi] | + wlB,0) + Zew(R,0) + Z2ex(R,O) =0, (B

where cg;, ¢1i, and cy; are complicated functions of R and © only (note that cg; includes the term Poi g)-
The general solution of (8.67) is

VA VA ‘
w,rS(0)rzi + %S(a)ezg +Swyzzi + Zcoi(R,0) + - ci(R,0) + 3 c2i(R,0) = Fzzi(R,0), (8.68)

where Fzz; is another arbitrary function of R and © only. Applying the three boundary conditions of (8.53),
we obtain

h h2 h3 . _ h R2 B3
Fzz, = —pt + 3C0s + o+ 52 C20) and Fzz. = —p~ — 3 Coc + g Cle — 54 C2e- (8.69)
The solutions for this stress component are thus
Swyzzs = —p" + (E - Z) cos + l(hz —42%) c1, + 1 (h® — 82%) ¢ '
2 8 24 . (8.70)
— w,RS(0)RZs — —1’295(9)823
in the membrane substrate, and
: — h 1., 2 1 .3 3
Swyzze = —p~ — §+Z Coe + g(h —4Z%) ¢ - ﬁ(h +82%) coc
(8.71)

w
— w,RS(0)RZc — —ée-s{o)ezc

in the coating.

8.5 Continuity Conditions on the Out-of-Plane Stress Components

Requiring that the stress components S(g)rz and Sg)ezs be continuous at the interface Z; = (he — hs)/2,
we find from (8.65) and (8.66) that we must have

1
S(O)RZ.?(ZI) - S{G)RZc(ZI} = hsaos + hcaoe + é‘hc hs (15 — a1c) = 0, (8.72)

and
1
S{O)BZs(Z}’) - S(O)GZC(ZE) = hsbos + hcboe + Ehc hs (bls - 616) =0, (8.73)

- respectively. Assuming these continuity conditions to hold, the continuity condition for S(0)zz at the interface

follows from equations (8.70) and (8.71), viz.,

1,
S(G)ZZs(ZI) - S(G}ZZc(ZI) =p+ hscos +hecoe + §he hs (c15 — c1c)

1 8.74)

1 ,
+ Ehs {3}&3 '§'h§) C2s + ﬁhc (3h§ +h§) ¢ = 0,

(8.75)




is the pressure difference between the lower and upper faces of the deformed configuration. Equations (8.72)-
(8.74) represent conditions that must be satisfied by the fourteen Z-independent functions ao;, a1, boi, b1i,
Coi, C1i, and c; (i = ¢ or 8), in order for the out-of-plane stress components to be continuous across the
coating/membrane interface.

To facilitate the development of the continuity conditions, we first separate each of the m-plane consti-
tutive relations (8.32)-(8.34) into its Z-dependent and Z- mdependent parts:

So)rei = ORrei — ZNRrei,  S()RRi = ORi — ZNRi,  S(yeei = Tei — ZNei, (8.76)
where
oroi = Gie€ho, nrei = Gikere, 8.77)
ori = Si+Qi (kr + vi€de),  nri = Qi (krr + vikes), (8.78)
oei = Si+Q; (ede + vickr),  nei = Qi (kee + vikrr). (8.79)
In (8.78) and (8.79) we have introduced material parameters Q;, defined in terms of the moduli and Poisson’s
ratios by
_ K, _ E.
Qs_l_yga QC‘_ I—Vg’ (880)

and from (8.38)—(8.40), the Z-independent “strains” and “curvatures” are given in terms of the leading order
displacement components by

1 ueg—v I Rwe W RWO W, RO
0 == ) ) f 3 5 = 0 8.81
€ne 2 (’U,R + R + ) + R ’ kre R + R2 ) ( )
0 — 1,
¢rr = ur + LrRWR + Swp,  krr = wrr, . (8.82)
ve+u w¥ w w .
o= "2~ + %, hee = 5 +m (8.83)

The development of the continuity equations first requires identification of the fourteen Z-independent
functions ag;, a1i, bos, b1:, Coi, €14, and ¢s; (i = ¢ or s). Comparison of (8.62) with equations (8.58) and (8.59)
yields

1
agi + Zay; = & [(RS(O)RRi)’R - Syeei + S(O)Rei,e] y (8.84)

1 1
boi + Zby; = i (R? Soyrei).R + R S)eei,0- (8.85)
Similarly, comparison of (8.67) with (8.60) yields

1 w
coi + Zcii + Z%co = 7 [w,RS(O)Rei + ?es(o)eei +S(0)GZi] o |
1 1 we
+ g (RS(o)rzi) g + & [R (w,RS(O)RRi + TEOS(O)Rei)],R + poig. (8.86)
Substituting from equations (8.76) in the right-hand sides of (8.84) and (8.85), we easily find

1 1
ai = ¢ [(Ram),R - o0ei + O'Rei,e] ) ai = g [(RﬂRi),R - nei + ﬂRei,e] ) (8.87)
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1 1 1 1
boi = i (R*ogrei)r + R 0010 b = & (R*nrei),r — R ei0: (8.88)

for either i = ¢ or s. Substituting from equations (8.76), (8.65), and (8.66) in the right-hand side of (8.86),
we eventually obtainfori = s:

1 w h h?
Cos = pPos g+ E [ (L’-’,RURGS + _ée'ges + §b()s + —S_bls) (889)
K]
h K2 w
+ <§Rags + 5 Rara + Rw o + -—}’%gcgea) ] (8.90)
R
=1 we ve
e = - [(w,a?}aes + 05 +b0s) -+ (Raos + Ruomnms + mzes)ﬁ] : (891)
1
e = =52 [1s.0 + (Ravs) g] 8.92)
andfori=c:
1 w h h?
Coc = Pocg+ E [ (w,RURSC + ?858{: - §bﬁc + 'é‘blc> (8.93)
8
h h? w
+ (_é'RaDc + ?Ralc + RW,RURC + —‘LRQ‘GRGC) ] s (8.94)
R
1 w w
e =-% [(W,Rﬂnec + “mec +buc) -+ (Raoe + R pnre + 0o gﬁ] : (8.95)
1
e = —5= [breie + (Raso) o] - (8.96)

Beginning with the continuity condition for Sygrz given in (8.72), we substitute from (8.87) into that
equation, then expand the derivatives and multiply the result through by R, to obtain

hs (Rops,r + Ors — 00s + OR0s,0) + he (RORc,R + ORc — Ooc + OROC,O)
1
-3 he hs [(Rnps,r + MRs — Nos + MRes,©) — (RNRe,R + NRe — Noc + MRoc0)] = 0.

Substituting from equations (8.77)—(8.79) into this equation yields, assuming the residual stresses S, and S,
to be constants,

R(Acqrr + Avedor) + (A — A) (€hr — Qo) + Ae ko.0

+ R(Bkrrr + Bykeo,r) + (B — B,) (krr — kee) + Bokreo = 0, (8.97)

where we have introduced the following constants linear and quadratic, respectively, in the thicknesses k.
and hg:

A = h Qs + hcQo, A, = hsQsvs + he Qci’c’ Ao = hy Gy + he G, (8.98)

1 1 1 !
B = i’hchs (Qc"Qs): Bu = é’hchs (chc‘QsVs) BG: Ehchs (Gs“Gs)- (8-99}

Similarly, substituting from (8.88) into the continuity condition (8.73) for S)ez, we obtain after some
algebra the following form for the second continuity condition:

Ao (R’¢pe) p + R(Ace + Avekr) o + Bo (R*kre) p + R(Bkeo + Bukrr)g =0,  (8.100)
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where the constants are defined in (8.98) and (8.99), and we again assumed the residual stresses to be
constants. .

The final continuity condition (8.74) involves some rather tedious algebra, which we omit here. However,
in order to write the result in terms of constants previously defined in (8.98) and (8.99), we remark that we
make use of the following identity: ' :

hﬁ Xos — hi Xoc = (ha - hc) (hs Xos + hc XOc) — hchg (XOc - XOa), (8.101)

where the Z -independent function x may be either a or b. Using this identity, the final continuity condition
can be brought to the form

{% (hs — he) [R(A€kpr + Avedor) + (A — A)) (¢kr — €do) + Aoc€ho o)
— [R(B&rr + Buedor) + (B — By) (¢kr - €do) + Bo €ro o)
— [R (Dkrr.r + Dykeo,r) + (D - D,) (krr — kee) + De kre 6]
+ R[wn(N + Achp + A, édo + Bkar + Bykoo) + 22 (Ao cho + Bokro) | } .

1 (1 ’
-+ 'ﬁ {'2' (hs - hc) [Ae (R2€929)’R + R(Aﬁge,e + Ay C%R,e)] - [Be (R260R9)’R
+ R (BC%e,e + By E%R,e)]
- [ﬁe (R’kre) p + R(Dkeoe + Dy kRR,e)] + R?w,r (Ao €ko + Be kre)

+ Rwge (N + Aedo + A, €kp + Bkoo + By krr) } ot R(p+ 1g9) =0, (8.102)

’

where
Yo = hspos + hepoc, (8.103)

is the areal density of the coated membrane (mass per unit area, K g/m?, of the circular disk perpendicular
to the axis), and we have introduced three new constants, each cubic in the thickness h,, defined by

3

D= %[(1+3H)Q,+(3+H)H2Qc], (8.104)
3 .

D, = %{(1 T+ 3H) Qurs + (3 + H)H2Qurc), (8.105)
3

Do = -;‘—;[(1+3H)G,,+(3+H)H?Gc], (8.106)

as well as a constant N having units of N/m: »
N = h;S; + h:S.. (8.107)

In the definitions (8.104)-(8.106) we have eliminated he, introducing instead the thickness ratio H defined
by '

H (8.108)

I
S| &

The terms in (8.102) involving the constants A, A,, and Ag can be eliminated in favor of terms involving
B, B,, and Be and three new constants D, D,, and De, by using the first two continuity conditions (8.97)
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and (8.100). With these manipulations the third continuity equation simplifies a bit to

{~[R(B&ar + Bodos) + (B — B.) (€hr — ebo) + Bo cho o]
— [R(Dkgrrr + Dy kee,r) + (D — D,)(krr — kee) + De kre,e)
+ R[w,g (N + Adp + A, 4 + Bkrr + B, keo) + %g (Ao %o + Bekge)] }‘R
+ i}g { - [Bo (B2ke) & + R (Beboo + B e?me)}
- [De (R’kre) » + R(Dkeoe + Dykrre)| + B2 w,r (A € + Bo kne)
+ Ruwe (N + Acgo + Avepp + Bkoo + B, krr) },e +R(p+09) =0, (8109

where D, D,, and Dg are defined by

3 |

D= TE[(1+ 31 Q. + (3 + H)HQL, (8.110)
3

Dy = ?‘%{(1 + 3H?) Qavs + (3 + H?)HQcre), (8.111)
3

Do = T2 [(1+ 3H2)G, + (3 + H2) HG. ] (8.112)

We conclude this Section by summarizing the continuity conditions in terms of the strains and curvatures
(and their partial derivatives):
R(Aegpp + Avedor) + (A — A) (hr — €do) + 4o ko0

+ R(BkRR,R + B, kBS,R) + (B - B,,) (kRR - kee) + Bg kRe,e =0, (8.113)

#

Ag (Rze?ee),ﬁ + R(Aedo + 4, e?;m),e + Be (R%Re)ﬁ + R(Bkee + Bykrr) o =0,  (8.114)

{— [R (.B é})ZR,R + Bp E%G,R) + (B - By} (E%R hd 5%9) + Be 'Egee’e}
— [R(Dkgrr + Dykeo,r) + (D — D,)(krr — kee) + De kre o)

+ R[(w,ﬂ+r,3} (N + Ahp + Aye2o + Bkrr + B, keo) + ?“—’é‘? (Ao & + Bekge)} } .

1
+ 75 { — [Bo (R*¢ho) » + R (Bedoo + Behne)

— [De (Rsze)’R -+ R(Dkae,s + D, }CRR,Q)] -+ R? (w,R + F,R) (Ae EORQ + Be kRe)

¥

+ Rwe (N + Acge + A, %p + Bkeo + B,,.kRR)}e + R(p+vg) =0, (8115

¥

where the definitions of the constants are repeated here, for convenience:

N = hgSs + hc S, (8.116)

A=hsQs + h Qc, A, = hsQevs + he Qcve, Ag = h; G, + h.G,, (8.117)

: 1 1 1
B = ihchs (Qc - Qs}’ B, = §hehs (chc - st”s); Be = §hch’s (Gc - Gs}; (8.118)
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3 .
D= Z[(1+3H)Q + (3+H)HQ, (8.119)

3

D, = %[(1+3’H2)Q3u3 + (3 + H2)HQw), - (8120)
3

Do = Y2 ((1+3%)G, + (3 + H)HG.] (8.121)

Note that in (8.115), we have replaced two occurrences of the partial derivative wr = w,r + T'r. For
comparisons with Wittrick’s work [16], we remark that our w corresponds to the function he denotes by w,
our I corresponds to the function he denotes by wo, and our w corresponds to the function he denotes by w'.
The constants given above differ from those in equations (8) of [16] due to a difference in the choice of origin
of coordinates (our origin is at the center of the middle plane of the reference placement, while Wittrick’s
corresponds to the center of the interface plane between coating and substrate of the reference placement).

"The constants Ae, Be, and Dg do not appear in Wittrick’s paper, since he treats only the axisymmetric
problem.

8.6 Formulation of Equilibrium Equations in Terms of Stress Resultants and Stress Couples

It is more common to find the equilibrium equations for a shell or plate presented in terms of stress resultants
and couples, and in many respects such a formulation is simpler than (though equivalent to) the one discussed
in the previous two Subsections. However, it was felt that the approach via continuity conditions was
sufficiently novel to include in this Report. Here, we derive equations involving stress resultants and stress
couples from the fundamental equilibrium equations (8.58)—(8.60), which we repeat here for convenience:

S(o)rzi,z + % [(RS(O)RRi) r — Soeei + S(O)Rei,e] =0, (8.122)

Swyeziz + %(Rz Soyrei).r + %S(O)éei,e = 0. (8.123)
[w,ns(o)RZi+w—i§S(o)ez¢' + S(o)zm] 2t Ili [W,RS(O)Rei + 'u;TeS(o)eei + S(O)eZi] o 124
+ % [R (w,RS(O)RRi + %’Tes(o)}zei + S(o)th')],R + poig = 0, o0

where the last equation is a slightly modified version of (8.60). Each of equations (8.122)—(8.124) is first
integrated through the thickness to eliminate the Z-dependence. Introducing radial, circumferential, and
in-plane shear stress resultants, defined by the following integrals through the thickness (refer to the lower
portion of Figure 2):

h/2 (he—ha)/2 h/2
Ngp = / S(o)RRidZ = S(O)RRc dz +/ S(O)RRs dz, (8.125)
—h/2 —h/2 (ho—hs)/2
h/2 (he—h.)/2 h/2
Npe = / SoyreidZ = / \S(O)Rech+/ S(o)res 4Z, (8.126)
—h/2 ~h/2 (he—ha)/2
h/2 (he—hs)/2 h/2
Ne = / S(o)eei dZ = Syeec dZ-l-/ S(o)ees dz, (8.127)
~h/2 , —h/2 (he—hs)/2
as well as out-of-plane shear stress resultants defined by
h/2 (he—hJ)/2 hj2
Qr = / So)rzi 4Z = S)rzcdZ + / S(o)rzs 4Z, (8.128) -
—h/2 . —h/2 v (he—h,)/2
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h/2 (he—hs)/2 h/2
Qe = f SwyezidZ = f Swyez.dZ + f Syezs dZ, (8.129)
—h/2 —h/2 (he—hs}/2

equations (8.122)~(8.124) reduce by this integration process (after multiplying thru by R) to

(RNg) p — Ne + Nree = 0, (8.130)

(R2Nge),R + RNgp = 0, (8.131)

and

PR + [R (w,R Ng + ‘%GNRE n QR)],R + (w,RNRs + -‘%gNe + Qe) o tWIR =0, (§13)

where we have also applied the leading order boundary conditions of pressure {852) In the last equation
we have introduced the pressure difference p, defined earlier in equation (8.75), and have assumed the mass

densities to be constant through their respective thicknesses (although they, as well as p, may vary with B
and ©).

We next multiply equations (8.122) and (8.123) by Z, to obtain

1
Z(Sorzi) z + 7 [(RZ S©rRi) p — ZS{o}eei + (2 Srei) ]

=(z S(G)RZ:')’ - Sorzi + 5 [(RZS(G)RRJ r — ZS0eei + (Z S((})Rez) ] = 0,
(8.133)

and

1
Z (Swezi) z Rz (R*ZSorei) p + 3 (2 S(a)eee)

(8.134)
1
= (Z8wez) ;, — Swez + 77 (R*ZSomei) 5 + & (Z50eei) o = 0.

Integrating each of these equations through the thickness, applying the boundary conditions of pressure
again, and introducing the following stress couples:

h/2 (he—hs)/2 B/2
Mg = f Z So)rridZ = f Z So)rRc 42 + f Z S(o)rRs dZ, (8.135)
—hi2 h/2 (he—ha)/2
h/2 (he=hs)/2 h/2
Mge = Z S@oreidZ = / Z Soyrec 4Z + / Z Sioyres 42, (8.136)
R ~h/2 (he—ha)/2
h/2 (he—hs)/2 n/2
Mg = / ZS(o)eeg dZ = [ ZS{g}eec dZ + f ZS(e}ees dz, (8.137)
—h/2 —h/2 (he—hs)/2 ,

we obtain from (8.133) and (8.134) the following equations involving the shear stress resultants and couples:

1
~Qr + 3 [(RMR) z - Mo + Mro,o] = 0, (8.138)
and 1 ,
Qo + 53 Rg (R? MRS) + ﬁMe,e =0. | (8.139)
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The last two equations can be used to eliminate Qg and Qe in equation (8.132), to bring it to the form

‘ [R (w,R Ng + ?‘UI%—GNRG) + (RMp)p — Me + MRG’G]

a1 1
+ |wrNRre + E—’—e-JVe + =3 (R2 MRe) rT = Moo +(p+w9)R=0.
R R ’ R 0

R
(8.140)

Equations (8.130), (8.131), and (8.140) are the fundamental equilibrium equations in terms of stress
resultants and couples, which are given by the integrals (8.125)—(8.127) and (8.135)~(8.137). Performing
these integrals, we obtain (see Appendix A for the details):

Nr =N+ Aqp + Ayede + B(cRR + B, koo, (8.141)
Nro = Ae €po + Be ke, @14

No =N + A, é&r + Ado + B, krr + Bkeo, (8.143)
Mg = —M — Beyp — By edg — Dkrr — Dy kee, (8.144)
Mpe = —Be €y — De kre, (8.145)

Mo = —M — B, éyp — Bedo — D, krr — Dkoo, (8.146)

where we have introduced the following new constant (having units of N - m/m):
1
M = Ehchg(Sc - Sa ), (8-147)

all other constants having been defined in (8.116)—(8.121). Substitution of these expressions in equations
(8.130), (8.131), and (8.140) yields equations (8.113)—(8.115), which were obtained in the previous Subsection
as continuity conditions.

9 Geometrically Nonlinear Membrane Shell Laminafe Theory

We follow Erbay [11], and set the scaling exponents of Section 7, Table 1, tor =m =1/2,£=n=1,1 = 3/2,
p=2,q=>5/2, and p = 1/2, to obtain a generalization of the geometrically nonlinear membrane theory
of Hencky [13] and Campbell [14] to a membrane laminate. With this choice of exponents, the constitutive
equation (7.23) takes the form '

~ ~ — — 02 + V2
*?%:8izz = eSiSI™ + &-{ (1-wv) [5—1/2 We + %s“ Wi+ (—"2_)]

[ (5 1o VotD Wo\ (00473 Go-v+Fe+0)
+u,[e(U,p+2W,,,+ 5 +2p2 + € 5t 207 .

(CRY

Each variable is now expanded in an asymptotic series in powers of €1/2 (recall that u = 1/2 here), and in
particular we have for the partial derivatives of W with respect to (:

We = Woye + €2 Wy + eWeaye + 62 Weay ¢ + €2 Wiy + O(?), A (9.2)
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hence, to order €2, we find
Wi = Wye + 2Wone Wne ? + Wiy +2Wio W | €

+2 [W(e},cwcs),c + Wy ﬁ\’m).cl €% + [Wé),c + 2Wo).c Wiayc + 2W,c W(s),c] & + 0(%/?),
©.3)

and similar expressions for f}% and f’% Substituting in (9.1), we obtain to order &:

-~ o~ 1 — - - ——— ——— ——~
%8 0yizz = €T:SP™ + &f{ (1- Vs){gs "Wy eV (W{G),c + W(O),CWG},C)

1 —— — —— —_— -~ o~
+3 (2P ¢ + Wiy +2Wooy.c Wane + Ty ¢ + %)

+el/? (W(z},«: + Wiy Wiy + Waye Weayc +Ui0),cUnyc + Vioy.c Vi )

1 — — — o~ - ~" A ~ " o~
+ 3¢ (2 Wia)c + Wiy e +2Wa)cWesy.c + Uy ¢ + 200Uy + Ve + 2V00c Vo) ) }

- 1 Vore +00 W2
+ vie (U{g),p-{-EWE‘:})’p_%_ (9),9p (9} + 2(;}2,9 + 0(53/2).

.4

Since this expression must hold in the limit € — 0 (vanishing thickness), the coefficients of negative powers
of € must vanish, hence Wg) ¢ = 0, yielding the solution

W) = w(p,0), | ©.5)

where w is an arbitrary function of p and © only. Equation (9.4) then reduces to
~ ~ 1/ o~ — ~ ~
58012z = €Ti5P™ + &-{ (1-w) [5 (2 Waye + Wy o+ Ul o + V(?a},c)
+ '/ (Wm),c + Wy Wy + U).cUnyc + V(O),cx”(l),c)

1 —— o~ ——— - -~ ~ ~ -~ o~ o~
+ 3¢ (2Wionc + Wiy + 2Wi «Wesy ¢ + 02 ¢ + 2000, Ty + V) + 2Vi00c Vo ) }

-~ 1 Voo + U0y . W2
+ vie (U(D),p+§W§,},p+ (")’ep © 4 2‘;;9) } + 0(e%/2).

9.6)

The following three additional conditions are obtained from the vanishing of the coefficients of €%, €1/2, and
€, respectively:

2Waye + Wie + Uloyc + Ve = 0, 0.7
W@):C + W(I)’C W{g)’c + ﬁ(o):Cﬁ(I},C + f/}(g},gf}(l)’c = 0’ (9'8)

2T + & [(1 —13) (2Weay.c + Wiy ¢ + 2 Wiy Wi + Uy ¢ + 2000, Doy ¢ + Ty ¢ + 2V Vo)

. 1 Voo +00 w2

2p?
9.9




which we shall need later. We turn next to the two off-diagonal constitutive relations (7.24) and (7.25) under
these new scalings:

e2%iSrzi = % [T +/5W,, + T )W + W W + (U0 + AR (9.10)
2550z = % {V,C +el/? w:;e + W":V"’ +e [U’C(U'e — V):V‘(V'e +U)] } (9.11)

The leading order terms in these equations imply ﬁ(o) < =0and 17(0),4 = 0, hence the leading order in-plane
displacement components are both independent of ¢, i.e.,

Oo = u(p,©), Vg = v(p,0). 9.12)
The conditions Uyg) c = 0 and Vg ¢ = 0 reduce equations (9.7)-(9.9) to
0):¢ 0):¢
W (2,+ Wu),c) =0, | - (9.13)
Wy (1 + Wm,c) =0, (9.14)

22i§?m + & [(1 - l/i) (2W(3),§ + Wé),( +2 W(l),CW@),( + 17(21),( + ‘7(%),.()

+ 2y; (u,p+§w,p+——p—+%§-)] = 0.

(9.15)

Noting that W(o),( = 0 implies a scaled Jacobian determinant (7.22) of the form
J=1+ W(l) ¢+ 0(61/2),

it follows that in the limit ¢ — 0, since we must have J > 0 in that limit, we must also require W <> -1
This precludes the solution W(l) ¢ = —2of (9.13), 1mp1y1ng that W(l) ¢ = 0. This leads to W(z) ¢ =0, from
(9.14), hence (9.15) yields the following expression for W(3) ¢:

= 1z oo =:5pm vi 1, vetu Ve
Wy = 9 (U(l),c + V(l),c) TE0-v) 1-y Up+ 2w.p+ p + 202 | (©.16)

Next, the off-diagonal in-plane constitutive relation (7.26) has the following form under these scalings:

. . -~ _ -~ f ——— - -
G {e (V,p+ U,ep V) +e ,pZV,B + 6W"’:V'e

0,00 -7 +V,(Ve+ ﬁ)} }
P

€%:8pei =
9.17)

+ €2

The leading order term here yields the same constitutive relation found in (8.18), except that the strain-
displacement relation has changed:

o G; - T w IR T - ,
ZiSe)rei = ?t (U,p'*‘ U,ep Lt ’pp 2 4 'pp ’e) = Gi€re, (9.18)
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where

1 Ug—v f w w LW
ro = 5 |v,+ 2T — 4 28 4 0 ) 9.19)
2 p p p

The final two constitutive relations (7.27) and (7.28) take the foﬂowing forms:

€5:SRni =EEg§?m+5i((l—V§) {sU + el , W, + 2 {awz + e (ﬁi-&—ﬁi)]}

Po+0) . W2 Do~ V) + (Do + DY f
rule(Yerl)  Ho, o1 Ue-V) +Fetl) 920)
p 2p? 2p?
—1/25{; -—11W2 1 L‘}z f}z
te < teTy @*‘5( <t ,c) ,
and
A =, ‘79+ﬁ w?e 2 (ﬁ,e—f})z-i—{{’:e-i-ﬁ)g
eX;Sea; = XS+ & ((1—:/;}{ ( p )-{—Egpz +€ 27
77 774 1 372 2 {772 72 9.21
+ i el +el, W+ 5 [W2 + & (02+72)] ©21)

~1/2717 —1lss 1750 o
+e VW, + ¢ 1§W}2 +3 (U,§+V,C) })

In the last two equations the terms up to O{e) involving derivatives with respect to { reduce to simply
ﬁf(g}’c, which can be replaced by (9.16). The coefficients of £ then yield, after some algebra, the same
in-plane constitutive relations (8.27) and (8.28), except that the strains are now given by the Z-independent
expressions .
ve t+u w:ze
p 2%
The most important results here are that the leading order in-plane displacement components have the forms
Uwyr = w(R,©) and Ug)e = v(R, O) (in terms of the physical variables), i.e., they are independent of Z.
This is in marked contrast to the Kirchhoff-Love expressions (8.31) found previously, which are linear in Z.
As a result of these simple expressions for the in-plane displacements, the curvature terms Zgg, kro, and
koo do not appear in equations (8.35)—(8.37) defining the in-plane strain components. Summarizing to this
point, we have derived the following expressions from the scaled constitutive relations:

o~ —_ 2 o~
€RR = U, T+ 523,9 > €ge =

{8.22)

Ugz = w(R,0), Ugr = u(R,0), Uge = v(R,0), . (9.23)
Swoyrei = Gicre, (9.24)
E;
Swoyrri = Si t1-,2 72 (erm + vicoo), 9.25)
E;
Soeei = Si+ T— . (eoo + vi€RrRr), (9.26)

where S; is given by equation (8.29), and

1 ue—v I rwe WRWeE \ _ '
ro = 3 (ﬁ,ﬁ v Lave | vat ) = Lo, e
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1
€rr = u,r + T pwr + -'w?R = e?m, (9.28)

2
’ ve+u 26 0 .
€ = . R + W = €go- (9.29)

Under these new scalings, the radial and circumferential equilibrium equations (8.122) and (8.123) are
unchanged, but the shear stresses disappear from the terms of the axial equilibrium equation (8.124) involving
derivatives with respect to R and ©. The leading order equilibrium equations are then given by

Sorziz + 5 [ RS(o)RRz) - Syee: + S(o)Rei,e] =0, ' (9.30)

1 1
Soyeziz + y3 (R? S(o)rei).R + “RS(O)eei,e = 0. 9.31)

w 1 w
(w,RS(o)RZi + ?es(o)em + S(O)ZZi) , R (W,RS(O)Re_i + “ﬁe—s(o)eei)’ o

+ % [R (w,RS(O)RRi + %S(O)Rei)]ﬂ + poig = 0, (9.32)

where we used the result W, = ¢3/2 W(s),c + O(g?) in obtaining the scaled version of the last equation. The
boundary conditions of pressure are again given by (8.53), so the equilibrium equations can be integrated
through the thickness, applying the boundary conditions of pressure, to obtain (after multiplying thru by
R) equations in terms of the in-plane stress resultants (8.125)—(8.127):

(RNR) p — Ne + Nre,e = 0, ‘ (9.33)
(R2NR6),R + RNepe =0, (9.34)
ve ’ ve _ .
[& (wrNr + =2 Npo )]R + (w.rNre + =5 Ne),e +(p+%9)R = 0. (9.35)

Since the curvatures have vanished from the formulation, the stress resultants (8.141)—(8.143) in this case
reduce to

Nr =N + A%r + A, 6, (9.36)
Nre = Apg €hg, 9.37)
No =N+ A, &p + Ado. (9.38)

10 Geometrically Linear Shell Laminate Theory

Assuming the scaling exponents r =1, m=2,{=n=3,t =p=4,¢=25, and p = 1, we begin again
with the constitutive relation (5.5) for Szz, from which we obtain

~ 1 -~
. 552,-Szz,- = 32 Snm + 8,{ (1 - V,) [EW( + € EWZ + etz 2 (UC +V2 )]
n n o~ Ve+l w3
+ Vi [83 U,p + r,pr + M + W2 + —
p 2p?
U2+V2  (Ue-V)+ e +0)? |
+ 6 ( p2 L 4 20 ]} : (10.1)

40



Each of the scaled stress tensor components, as well as each of the displacement components and its partial
derivatives, is now written as an asymptotic expansion in é = ¢, since g = 1. Substituting the appropriate
expansions for the variables appearing in equation (10.1), we obtain to third order on the right-hand side:

R _~ —_ 1/\ —~—~
552£S(g)zz§ = 332,;,5'?"“ + 5@{(1 —v;) [SW(Q),C + g2 (é-W‘%)‘C -+ W{l),()]

— o . o Vo +0
+ & [(1 - ;) (W(Z),C + Wo)¢ W(;)’C) + v (U(o),p +T Wy, + —Mg—ig)i{ + 0(64) },(10.2)

The leading order term of this relation yields

Woe =0 = Wg =ip0), (10.3)
where @ is an arbitrary function of p and © only, and then the next order term reduces to the result

Wi1),c = 0. With these results, the third order term then gives the following important relation:
o L Gam vi |5 « - Voe+lo
W@)y( - gz(l —- Vi) Si - 1 -y U{ﬂ)vi‘—’ + ysi‘?wﬁ? + p " (10'4)

Next, consider the last two off-diagonal constitutive relations of (5.6) for the out-of-plane stress com-

ponents. The scaling of these components yields the scaled relations (to third order on the right-hand
sides):

- a. ~ - o o~
e*TiSrzi = ?z {62 (U(e)‘g +Woy,o +I‘,,,W(0},§) + 0(83}} s (10.5)
~ , - W,
e'%iSezi = % [32 (V(o},g + ———j})ﬁ—) + 0(53)} ) (10.6)

respectively. From the leading order terms of these expressions, recalling that W{g}‘c = 0, we obtain the
following two equations:

o~

o~ ~ —~ wse
Uog+@p =0, Vo + == =0,
which may be integrated to obtain
P ~ . 5 ~ )
U{O) = ’I.L(p, 9) - gw,.ﬂ’ and "/(0) = "-’(ﬂ: 6) - g'_};?'a (10.7)

where @ and 7 are arbitrary functions of p and © only.
The scaled version of the first off-diagonal in-plane constitutive relation of (5.6) reduces to

3 1 (5 Uoyo —Vioy | T..W,

Thus, to leading order we obtain the simple relation

2i80yrei = Gitre, (10.8)

after introducing an in-plane strain component ége defined by

~ Uoe—Vioy T,0

~ L Ge-0_ T,b o ©
[v,p - “’ep -+ L8 4o (Eﬁ - w"’e)} : (109)

b2 |- b =

€re

0? P




The final two constitutive relations (5.3) and (5.4) take the following forms (to third order in €), after
scaling of the various components:

532i§RRi = E3Ei§?m + & { (1 - Vi) s (ﬁ(o),p + f‘,pW(o),p)

Viore + 0, — — —
+ [63 (-——-——(0)’ep (0)) + e (W(o),( +eWy ¢+ EZW(Q),c)

1 —— —_—— _——
+ 562 (W(zo),( + 2EW(0),(W(1),C) ] + 0(54) }, (10.10)

and

~ - Vioye + U
e3%:800i = 632i5,-nm + & { (1-w) el ( ______(0),6p (0))

t v [53 (ﬁw),p +f.pﬁ7(0),p) te (W(O),c +eWayg +€2W(2),<)
+ %62 (Wg)),ﬁzew(o),cv’\v(l),()] +0(eY }- | ©(10.11)

The first and second-order terms involving W( in these expressions vanish since W(o) ¢ = W(l) ¢ =0, and

(10.4) can be used to replace the third order term involving W(2) ¢- To s1mphfy the reduction of the leading
order expressions that follow, we introduce in-plane strain components €rr and €pg defined by

ERR = U(0)7p + vaﬁvp = aip + FyP{D,P - C{U\.PP = E%R - CkRR’ (10"12)

. Viyo + U0y _ Do+ D, -
foo = © _ Ye 3 C( ee) = &g — CRoo, (10.13)
P p P
where we have introduced ¢-independent terms
’ég'tR = a,p + f,pﬁ,pa ERR = @,ppy (10.14)
Qo = Tot@  p o = Bp “’99. (10.15)
p p p?

These, together with (10.4), allow us to write the leading order relations as

1-2y; 2

2i§(o)RRi = ( I

) 250+ & [(1 — V;)€rR + Vi€oo — - = ” (€rr + 599)]

i

1-2y;

) (€rr + vi€eo),

o~ 1- 21/,; nm lli2 o~ —~
ZiSeeei = | T £:8P™ + & |(1- wi)éoe + vierr — T, (Err +€e0)
1 1

= (1‘2'/'.) iSP™ 4 &
1—1/,'

Replacing &; in the last two expressions yields

1 2u;

) (€ee + Vi€RR) -

- ~ E R
ZiSoyrri = LiSi+ _'u2 (€rR + vi€oo ), (10.16)
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~ - E; R
LiSoyeei = ;i Si + 'i—_—;;g— (€0 + Vi€RR), (10.17)
: ‘
where we have introduced the new constants

5 = (1‘2"") gom, (10.18)

11—y

We summarize to this point by rewriting the important results in terms of leading order variables that
are functions of the physical coordinates R, ©, and Z, viz.,

u = 3a, v = €%a7, w = 2ai, T = eal, (10.19)
So)rei = €ZiSoyre: = Giere. (10.20)
- 35.9 E;
Sw)rri = €°ZiSo)rri = Si + 1.2 (err + vieoo ), (10.21)
%
— 3v.7 E; ‘
Swyeei = €°ZiSpeei = Si+ T2 (eeo + vi€rr), (10.22)
K]
- where 1_9 B
S =858 = (==24) grm = _ (2 ) am (10.23)
11—y 11—y

and the last equality of (10.23) holds for the special case of thermal stress, following from (5.2). The strain
components are given by

~ 1 ue—v I gpw w w :
¢ro = %epo = 3 [U,R+ ’GR + ’RR 2 427 (R—§ - —1—’;—9-)] = % — Zkgo, (10.24)
" €RR ESSQRR = upgr + I‘,R'wgg - Zﬁ),gg = 6?33 — Zkpr, (10.25)

_ ga veo+u W,R wee\ _
co0 = c¥epe = "2 — 7 (F + 25 ) = & — Zkeo, (10.26)
where the Z-independent strains and “curvatures” are
o =+ (vp+te—?  Lave ko = —=2 4 R0 (10.27)
RE = 2 R R R 3 RE = R? R’ -
E(I}iR = upr + [ rur, krr = wRr, (10.28)
0o — Yetu _ WR , Wee
€gg = T, kee = ’E + R2 . (1029)

Applying the scaling exponent values of this Section to the scaled equilibrium equations (7.38)—(7.40),
we obtain to leading order:

~ 1 P 174 P ’
S(©)RRi,p T+ 55(0)395,9 + So)rzic + ;(S(G)RR:’ - S(a)eei) =0, - (10.30)
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~ 14 ~ . 9.
Syrei,p + _;S(o)eei,e + Swyezic + ;S(O)Rei =0, (10.31)

-~ ~ 1/~ 2 ~
(r,pS(O)RRi + S(O)RZi) , + r (F,ps(o)zzei + S(o)em) o
~ A - 1/a - ~ R
+ (I‘,pS(o)RZi + S(O)ZZi) ) + ; (F,pS(O)BRi + S(o)RZi) + g = 0.(10.32)

In terms of the physical variables, these take the forms

.1 M
Sw)rzi,z + 7 [(RS(Q)RRi),R - Syeei + S(O)Rei,e] =0, (10.33)
1, 1
Soyeziz + yoo (R® So)rei),R + ES(o)eei,e = 0. (10.34)

. .
[P,RS(O)RZi + S(O)ZZi] ;T R [T rS(0)rei + Soyezi o
1
+ % [B (T.rS©)rri + S)rzi)] 5 + poig = 0, (1035)

The leading order boundary conditions of pressure are the same as for the previous theories, viz., .
+ _ + — £ o _k
Soyrz =0, Soez =0, 'S(o)zz = —p~. (10.36)
Integrating equations (10.33)—(10.35) through the thickness, we obtain the equilibrium equations by the same
method used in Section 8 in terms of the stress resultants and couples introduced in equations (8.125)—(8.127),

and (8.135)—(8.137), viz.:
(RNR) p — Ne + Npee = 0, (10.37)

(RZNRe) rT RNege =0, (10.38)
and

[RP,RNR +v(RMR),R - Me + MRG,G] R

+

1 1
I' rRNRre + 'ﬁ; (R2 MRG),R + RMe,e +(p+1v%g)R =0. (10.39)
. 0

The stress resultants and couples are again given by equations (8.141)—(8.143), i.e.,

Nr =N+ A%p + A, Qg + Bkrp + B, koo, (10.40)
Nro = Ae€%g + Bo kre, (10.41)

No = N + A, kg + Aedg + B, krr + Bkeo, : (10.42)
Mp = -M — Beé%p — B,edg — Dkrr — D, kee, (10.43)
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Mpge = —Bg €xg — Do kge, (10.44)

Me = -M — B, ¢4 — Bedo — D, krr — Dkeo, (10.45)
but note that the strains and curvatures are now replaced by (10.27)-(10.29) of the present Section.
11 Geometrically Linear Membrane Shell Laminate Theory -

In this Section, we develop the equilibrium equations for a geometrically linear membrane lannnate
subject to pressure and gravity loading. We begin by choosing the scaling exponents of Section 7 to be

r=m=1{=n=23/2,t=5/2,p=3,¢="7/2, and p = 1/2, as indicated in Table 1 at the end of that
Sectzen Wzth these exponents, equation (7.23) takes the form

B

6?/2255;225 = 3/2Ei§?m + gi{(l—lfa) [ <+ IWC + E; (§%+V§)]

~ Ve+U o = 1, W3\
+ v [53/2 (U,ﬁ _8;_) +2T W, + & (gwj, + 2—;—) (11.1)
D24+V2 (Tg-V)2+(Pe+)2
4 Y ,p+(U,8 V) + (Ve +0) ] .
2 2p?

The terms involving partial derivatives with respect to ¢ must be expanded ni) to terms of order £3/2, as in
equatmns (9.2) and (9.3). Making the appropriate substitutions in (11.1), and then setting the coeﬁ'iments
of €%, £'/2, ¢, and €%/2 in equation (11.1) to zero, we obtain the following four equations:

Wy + §W§3;,g =0, (11.2)
W(M + W(a),c Wu),c =0, (11.3)

A 1 —— —— - o~ o~
Woye + 5(Wh) o +2Wioc W) + (U(za),g';‘v(%),g) =0, (11.4)

=5 + 5:‘{ 1- i’i){ﬁ\’(?»),c + (W0 Weaye + Woaye Weaye)

S 4 -~ 4 - Vioye + U,
+ (U(s),g U + Vioe V(l),c)] + Vi (U(m,;r + L@p_m)_) } =0. (15

Equation (11.2) implies that W(g) ¢ =0, hence W({}) = @(p, (), and (11.3) then yields W(l) ¢ = 0, reducing
the remaining two equations to

W + (U?O),q +V(%),c) =0, (11.6)

TS5+ 5:'{ (1-w) [W(s},c + (U(D),c Uaye + Vo Ve ) ] +ui (U(e},p + _(9}_)@_(_@) } = 0. (1.7
We turn next to the two off-diagonal constitutive relations (7.24) and (7.25) under these new scalings:

- G' ~~ —— -~ —_— - ——— ~ ~ ~ ~
€*%iSpzi = 5 [51" PUg+eW, +el W +eW,We + &2 (0,0, + 7,7, }] ; (11.8)
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2 p

S5.8ag = G {El/zﬁc vl eWczV»e Lo [U,C(U.e - 1)+ V(o + U)] } C me)
The leading order terms in these equations imply U(o) ¢ =0and V(o) ¢ =0, hence the leading order in-plane
displacement components are both independent of ¢, i.e., U(o) = @(p,©) and V(o) = u(p,©). When these

two results are substituted in (11.6) and (11.7) we find that W(g) ¢=0,and W(3) ¢ is given by

& _ T vi (5 Vione + Uo)
Vo = ~ga—w ~ T-w) (U(O),p+ p , (11.10)

which will be used later.. First, we note that the off-diagonal in-plane constitutive relation (7.26) has the
following form under these scalings:

€¥/2%;8rei = Gi | a2 v, + Ue-V) , o LoWe | o W,oWe
2 P p P .
L [ﬁ,pa?.e -+ ¥,V + ﬁ)} }

P

(11.11)

The leading order term here yields the same constitutive relation found in (8.18), except that the strain-
displacement relation has changed:

ZiSorei = 3 (V,p+ 2 ) = Gi€ro, €Re = 3 (V,,+ 2 ) (11.12)
P 2 p
The final two constitutive relations (7.27) and (7.28) take the following forms:
28:8pm = €2 T8 ((l—v){ 20, + T, W, +5 [2W2 + & (U2+V,§)]}
Ve + U w2 7o _ V2 o (T + )2
+ Vi 63/2 M + 62 ,6 + 53 (Uve V) + (‘f'e + U) (11'13)
p 2p? 2p?

and

~ - i 73 W2 2 2
63/22’,Seei = 63/22,'55'"" +& ((1 _ Vz) (V,e:- U) +¢ 2p + 6 [(Ue V) 2';2(V6 + U) ]}

MU—‘ r—’\—\

+v { S0, +eT,W, +

152 2
+ W+ WC +e5(03+72) })
(11.14)
The terms involving derivatives with respect to ¢ in the last two equations reduce to simply W(S),C’ which can

be replaced by (11.10). The coefficients of €3/2 then yield, after some algebra, the same in-plane constitutive
relations (8.27) and (8.28), except that the strains are now given by the simpler expressions

17,e+fj
. .

(11.15)

gRR = U,p, ?ee =
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As with the geometrically nonlinear membrane theory, we again find that the leading order in-plane
displacement components Ugyr = u(R, ©) and Ugye = v(R, ©) are independent of Z. The curvature terms
krr, kre, and kee are thus again absent in equations (8.35)—(8.37) defining the in-plane strain components.
In addition, the nonlinear terms involving derivatives of w, as well as any reference to the surface-defining
function I'(R), have disappeared from the strain-displacement relations. In terms of physical variables, the
governing equations can be summarized thus far by:

Uonz = w(R,0), Ugr = u(R,0), Uge = v(R,0), (11.16)
Soyrei = Gi€re, : (11.17)

E;
Swoyrri = Si+ T2 (err + vieoo ), (11.18)

B

E;

Swyeei = Si + 1,2 (eoe + vierr), (11.19)
where
1 —_—

€RR = UR = €%p, (11.21)
o0 = ”’SR’*” = . (11.22)

Under these new scalings, the radial and circumferential equilibrium equations (8.122) and (8.123) are

unchanged, but the out-of-plane shear stresses disappear from the axial equilibrium equation (8.124). The
leading order equilibrium equations are then given by

1
Swo)rziz + R {(RS(D)RRE')’R — Swyeei + S(a)Rei,e] =0, (11.23)

1 1
Soeziz + Vo (R*S(o)rei).r + = Soyeeie = 0, (11.24)

1 w,e 1 we
Swyzziz + 7 [w,ﬁs(o}ﬁ&‘ + ?S{G)eei] o + g {R (w,RS{a)R&' + ?S(G)Reé):l’g + poig = 0. (11.25)

These may now be integrated through the thickness, applying the boundary conditions of pressure, to obtain
(after multiplying thru by R) equations in terms of the in-plane stress resultants (8.125)—(8.127):

(RNR)’R — N6 + Npeo =0, (11.26)
(R*Nge) , + RNeo =0, (11.27)
w)e - w_’S; = .
{R (&?’_RNR + ENRG}},R + (w,RNRe + R Ne),e +{p+ 'mg}R = 0. (11.28)
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Since the curvatures have vanished from the formulation, the stress resultants (8.141)-(8.143) in this case
reduce to

Nrp =N + Ap + 4, L6, (11.29)
Nro = Ao €%o, . (11.30)
No = N + A, €qp + Aedo. (11.31)

12 Conclusions

The method of asymptotic expansions has been applied in a purely formal way to the geometrically nonlinear,
three-dimensional equilibrium equations of a coated membrane laminate, each component of which is assumed
to be a uniform, homogeneous, isotropic elastic material. Four different choices of the scaling exponents
appearing in equations (7.2)—(7.5) have led to four distinct theories, each of which reduces to a well-known
theory when specialized to a single material. The method is systematic and self-consistent, as the only
freedom available in constructing a theory is the choice of scaling exponents. In short, having made a choice,
one is led without benefit of any further assumptions to a theory dictated by that choice. The main weakness
in the method is the essentially ad hoc nature of the choice of exponents used in the scaling of variables and
loads. Attempts have been made in the recent literature (see, for example [17, 18]) to remedy this remaining
unsatisfactory feature. ' '

Although no attempt has been made here to put the method on a rigorous mathematical foundation,
articles doing so are available in the literature, especially from the French school led by Ciarlet [19, 20,
and references therein] and his co-workers. Our goal was to survey, and systematically derive by a single
method, generalizations of several well-known theories of a single material to a coated membrane laminate.
The mechanical behavior of such a laminate is of considerable practical interest to those in the aerospace
community committed to the manufacture and deployment of large aperture, optical quality reflectors in
space. The availability in a single publication of several models from which to choose for the analysis of such
a laminate will hopefully be useful to other workers in the community. In that regard, a companion Volume
II of this Report providing details of the analytical solutions of several boundary value problems associated
with these models is currently being prepared for publication.
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A Generalization to a Multilayer Coating

High-reflectance optical coatings typically consist of a dielectric “stack” of two or more coating materials
alternating in position through the thickness. In this Appendix we generalize our work to include such mul-
tilayer coatings. The strain-displacement relations and equilibrium equations characterizing a given theory
are, except for the gravitational term of the axial equilibrium equation, unchanged by this generalization.
The only calculations that require modification are the through-the-thickness integrals of the constitutive
relations, which define the stress resultants and couples. These were first introduced in Subsection 8.6. We
give details of the calculations for Ng and Mg, noting that those for No, Ngre, Mo, and Mge involve
nothing new, and will be seen to be obvious generalizations of the earlier single-coating (two-layer) results.
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Figure 5: Geometry of multilayer stack.

The geometry of the reference placement of our membrane substrate layer N, with N — 1 coatings, is

illustrated in Figure 5 (compare to Figure 2). To do the through-the-thickness integrals, we introduce a
change of variable to

E=z+2 A1

As in Figure 2, the middle plane of the stack is the plane Z = 0 (corresponding to £ = h/2) which has, for
illustrative purposes only, been placed in the coating numbered N — 2 in Figure 5. From this Figure, it can
be seen that the thickness h; of layer i is given in terms of the new coordinate £ by

hi = & — &, (A2)

and the total thickness is

N N
h=Y hi=) (&-&-1)=¢&. (A3)

i=1 i=1-
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Thus, for the through-the-thickness integral of an arbitrary function f(Z) we have:

/h/2 f(Z)dZ -—/ fle)de = Z/ fleyde, (Ad)

Z=—h/2

— l—l

where f(¢) = f(¢ - h/2).
We begin by making this change of variables in each of the definitions (8.125)-(8.127) and (8.135)—(8.137)

of the stress resultants and stress couples, respectively:

h/2 _
Np = / " Soyrri(Z)dZ = Z / S(o)rri(€)dE, (A.5)
h/2
Nre = / s Soyrei(2)dZ = Z / S(o)rei(€)dE, (A-6)
h/2 -
No= [ . SoeeiD & = Z / Soeoide, A7)
/2 -
M= [ PO & = Z / [ &) SomnOat e
h/2 _
Mpe = e zZ S(O)Rez(z) dzZ = Z / (€ — h/2) S(oyrei(€)dE, (A9)
h/2 -
Me = o Z Soyeei(2)dZ = Z / (€ = h/2) Syeei(§)dE. , (A.10)

Recall now the separation of each of the in-plane constitutive relations (8.32)-(8.34) into Z-dependent and
Z-independent parts:

- So)rei = Orei — Znrei,  S)RRi = ORi — ZNMRi,  S)eei = Oei — Z7ei, (A.11)

where the Z-independent functions are defined by

orei = Gieke, nre: = Gikre, (A.12)
ori = Si+ Qi (¢hn + viedo) nri = Qi (krr + vikeo), (A.13)
oei = Si+Q; (3o + viekr), nei = Qi (kee + Vikrr). (A.14)

After the change of variables we have

Soyrri = ori — (E~h/2)1Ri,  Soyeei = dei — (€ — h/2)nes, (A.15)
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and 5
Swoyrei = orei — (£ — h/2)nRei. : (A.16)
Substitution of the first of equations (A.15) in equation (A.5) yields

3
Nr = Z / foms — (€~ h/2)maide

—:1

= Z [am(f, &i1) + nm(& &) — '»‘ms%(ff— Y ] (A.17)

i=1

- Z {a&h + 233R,h,[ (Es-i—&-ﬁ]},

=1

where we made use of (A.2) to obtain the final equality. Now, from (A.2) it is easy to show that

i
= h, , (A.18)
k=1
from which
&+ &y = Z hi + Z B, (A.19)
k=1
hence

i

he 6+ 6 )—h—Eha—th-Zm—th (A20)

k=1 k=i =1
where the last result follows by substituting the first equality of (A.3) for h. Substitution of this result in

(A.17) yields
Ng = Z oRihi + 3 Z NRih; (Z hy, — Z hk) (A21)

i=1 i=1 k=1

In this expression and others that follow we make use of the following identity, which can be proven using
the principle of mathematical induction:

N

N i N-1 N
> aihi (Z hy - th) =2, D hihk(ei — ), (A22)
k=1 k=1

i=1 t=1 k=i+1

for any indexed function a;. This allows us to rewrite (A.21) as

N
Ng =) omhi + 5 Z Z hibi (NRs — NRk) - (A23)
i=1

r—l k=141

Substituting now for og; and ng; from equation (A.13), we find

N
Np = Z h Si+QI (fRR + thee)]
i=1
(M-l N
5 D hihi[Qi (krr + vikoo) — Qi (krr + vikoo)], (A24)
k=1i4+1

[

i=




which can be written in the same form as equation (8.141), i.e.,

Ng =N+ AG%R + A, 6%9 + Bkgpr + B, kee, (A.25)
where the multilayer constants are given by
N
N =" wS;, : (A.26)
i=1 ’
N N
A=Y hQi A =) hiQwi, (A27)
i=1 i=1
QN1 N QN1 N
B=3 ' Z hihk (Qi — Qr), By =3 Z E hihy (Qivi — Qi) . (A.28)
i=1 k=i+1 i=1 k=i41

The multilayer expression for Ng follows directly from (A.25) and the observation that Ng and Ne differ
. ultimately only by an interchange of €% and €3¢, and krp and kee, which yields

No =N+ Ae%e + A, 5(})2R + Bkeeo + B, kgrn. (A.29)
The multilayer expressmn for Nge is an obvious generalization of (8.142), i.e.,
Ngre = Ae 5Re + Beg kre, (A.30)
where the constants generalize those found in (8.98) and (8.99):
N
Ao =3 hGi, Be =3 Z Z hihi (Gi — Gr). (A31)
=1 =1 k=i41

Turning now to the calculation of Mg, for a multilayer, we have from (A.8):

Mg = Z/ €- h/2) So)rrid€ = Z/ € S(o)rpi dE 22/ S(o)rri dE.

§=€i—1 i=1 Y€=§i-1 §=£i-1

Substituting from the first of equatlons (A.15), and using the definition (A.5) in the last term, the last
equation yields :

Mg = Z/ ¢ lori — (€ —h/2)nri]dE - gNR,

i=1
¢ h e h
= i+ o NRi ) d€ — / i€ d¢ — =Np,
'E_I/E& (UR 2713) 3 21 e nri&" d§ — 5N

= -Z (UR‘I. + = an) (612 - £12 1 327731 i - '— ) a gNR’

or, factoring the squared and cubed difference terms, and using (A.2) in the results:
1 h &
R=3 g opihi (& +§i-1) + Z; nri hi (6 + &i-1)

- _E 17Rt 6, + &&—1 + €,_ ) - g'NR. (A.32)
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Using the last equation of (A.17) to replace Ng in (A.32), and collecting terms 1nv01vmg o R and 7g; in that
result, we obtain

= ——Z TRi hg (h - E‘& Ei—i)

i=1
Z nri hi [38% — 6h (& + &i-1) + 4 (& + &&i1 + €1,)],

or, using (A.20) and (A.22) in the sum involving og;:

N-1 N
Z Z hihg (0R: — ORK)
i=1 1

Mll—-ﬂ

Z nrs hi [3R2 — BR(E+ &) + 4 (€ + &ia + €2,)] . (A39)

Substituting for or; and ng; from (A.13), we find that (A.33) can be written in the same form as equation
(8.144), ie.,

Mp = —-M — Bekg — B, g — Dkgr — D, keo, (A.34)

where the multilayer constants B and B, are defined in (A.28), M is given by k

N1 N
M=32 D mh(Si-S), (A33)
i=1 k=i+1
and D, D, have the forms

=5 Z Qihi [3h* — 6h (& +&i-1) + 4 (& + &b + €.1)], (A.36)
D, = - z Qivihi [3h? — 6h (& +&1) + 4 (€ + &1 + €2))]. (A37)

These two coefficients can be szmpl:ﬁed somewhat using the following identities:
h? — 6h (& + &i-1) = 3[R — 2h(hs + 261)] = 3 [(h — h)® - B2 - 4}@-_1} ,
&+ &Gk + & = (6 — &-1)” + 3660 = B + 366,

where we made use of the fact that & 4+ £i—1 = h; +2£;—; in the first of these. Substituting these results in,
for example, (A.36), yields after simplifying:

_ 1 al 2 ' ‘
D=3 ; Qihi [h? +3(h — )" — 1260 (h - 65)} ; (A38)

and we note that the third term in brackets vanishes for ¢ = 1 (since §, = 0) and i = N (since év = h).
Similarly, D, may be written as

—_ 1 = 2 2
D, = ﬁ; Qi v; h; ]:hi +3 (h - hz) — 12&;—1 (h' - 53)] . (A.39)

53




The multilayer form for Mg follows directly from (A.34) by simply interchanging ¢} and €3¢, and krr
and kee, which yields

Mg = -M —= Bedg — B, €%, — Dkee — D, kgp, (A.40)
while the multilayer expression for Mge is a generalization of (8.145), i.e.,
Mpe = —Bo€%g — Do kro, (A41)

where Bg is given in (A.31), and the new constant Dg generalizes (8.112) (it is in fact the same as (A.38)
with Q; replaced by G;):

1 & \
Do = ; Gih [B2 + 3(h - h)* - 1261 (h - &)]. (A42)

It is straightforward to check that our earlier results for the stress resultants and couples (for a membrane
with a single coating) follow immediately from those determined in this Appendix by taking N = 2 (in which
case i = 1 = ¢ corresponds to the coating, while i = 2 = s corresponds to the membrane substrate).
Finally, for a multilayer coating the areal density 7, defined by equation (8.103), which determines the
gravitational body force appearing in the axial equilibrium equation of each theory, must be generalized to

N
Yo = Z hi poi, (A43)

i=1

where po; is the mass density of the material in layer 3.
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